
Alexandre A S Gonçalves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5461856/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-Noble Plasmonic Metal-Based Photocatalysts. Chemical Reviews, 2022, 122, 10484-10537.	47.7	268
2	Role of activated carbons as metal-free catalysts. , 2022, , 245-265.		0
3	Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 2021, 401, 123413.	12.4	20
4	Facile mechanochemical synthesis of highly mesoporous Î ³ -Al2O3 using boehmite. Microporous and Mesoporous Materials, 2021, 312, 110792.	4.4	17
5	Recent advances in mechanochemical synthesis of mesoporous metal oxides. Materials Advances, 2021, 2, 2510-2523.	5.4	21
6	Advances in Microwave Synthesis of Nanoporous Materials. Advanced Materials, 2021, 33, e2103477.	21.0	84
7	Major advances in the development of ordered mesoporous materials. Chemical Communications, 2020, 56, 7836-7848.	4.1	74
8	Hierarchical porous carbon derived from acai seed biowaste for supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2020, 31, 12148-12157.	2.2	27
9	A generalized strategy for synthesizing crystalline bismuth-containing nanomaterials. Nanoscale, 2020, 12, 8277-8284.	5.6	6
10	Identification of preferentially exposed crystal facets by X-ray diffraction. RSC Advances, 2020, 10, 5585-5589.	3.6	39
11	Utilization of acai stone biomass for the sustainable production of nanoporous carbon for CO2 capture. Sustainable Materials and Technologies, 2020, 25, e00168.	3.3	19
12	Fundamentals of adsorption for photocatalysis. Interface Science and Technology, 2020, , 39-62.	3.3	11
13	Mechanochemical synthesis of three-component graphene oxide/ordered mesoporous carbon/metal-organic framework composites. Journal of Colloid and Interface Science, 2020, 577, 163-172.	9.4	22
14	Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48, 5184-5206.	38.1	260
15	Low temperature sulfonation of acai stone biomass derived carbons as acid catalysts for esterification reactions. Energy Conversion and Management, 2019, 196, 821-830.	9.2	67
16	Amino acid-assisted synthesis of porous graphitic carbon spheres with highly dispersed Ni nanoparticles. Carbon, 2019, 153, 206-216.	10.3	20
17	One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123884.	4.7	11
18	Development of nickel-incorporated MCM-41–carbon composites and their application in nitrophenol reduction. Journal of Materials Chemistry A, 2019, 7, 9618-9628.	10.3	43

#	Article	IF	CITATIONS
19	Evaporation-induced self-assembly synthesis of nanostructured alumina-based mixed metal oxides with tailored porosity. Journal of Colloid and Interface Science, 2019, 537, 725-735.	9.4	18
20	Capture of Iodide by Bismuth Vanadate and Bismuth Oxide: An Insight into the Process and its Aftermath. ChemSusChem, 2018, 11, 1486-1493.	6.8	19
21	Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. Applied Surface Science, 2018, 430, 2-17.	6.1	211
22	Gas adsorption properties of hybrid graphene-MOF materials. Journal of Colloid and Interface Science, 2018, 514, 801-813.	9.4	143
23	One-Pot Synthesis of MeAl ₂ O ₄ (Me = Ni, Co, or Cu) Supported on Î ³ -Al ₂ O ₃ with Ultralarge Mesopores: Enhancing Interfacial Defects in Î ³ -Al ₂ O ₃ To Facilitate the Formation of Spinel Structures at Lower Temperatures, Chemistry of Materials, 2018, 30, 436-446.	6.7	58
24	Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2018, 513, 82-91.	9.4	65
25	Effect of metal–ligand ratio on the CO ₂ adsorption properties of Cu–BTC metal–organic frameworks. RSC Advances, 2018, 8, 35551-35556.	3.6	24
26	Importance of surface modification of γ-alumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. Journal of Colloid and Interface Science, 2018, 526, 497-504.	9.4	31
27	One-Pot Synthesis of Mesoporous Ni–Ti–Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol. ACS Applied Materials & Interfaces, 2017, 9, 6079-6092.	8.0	44
28	SBA-15 templating synthesis of mesoporous bismuth oxide for selective removal of iodide. Journal of Colloid and Interface Science, 2017, 501, 248-255.	9.4	26
29	Defect formation in metal–organic frameworks initiated by the crystal growth-rate and effect on catalytic performance. Journal of Catalysis, 2017, 354, 84-91.	6.2	72
30	Dual optimization of microporosity in carbon spheres for CO ₂ adsorption by using pyrrole as the carbon precursor and potassium salt as the activator. Journal of Materials Chemistry A, 2017, 5, 19456-19466.	10.3	27
31	Tailoring porosity in carbon spheres for fast carbon dioxide adsorption. Journal of Colloid and Interface Science, 2017, 487, 162-174.	9.4	28
32	Polymer-templated mesoporous hybrid oxides of Al and Cu: highly porous sorbents for ammonia. RSC Advances, 2016, 6, 38662-38670.	3.6	3
33	Synthesis of Porous Crystalline Doped Titania Photocatalysts Using Modified Precursor Strategy. Chemistry of Materials, 2016, 28, 7878-7888.	6.7	23
34	Mesoporous calcium oxide–silica and magnesium oxide–silica composites for CO ₂ capture at ambient and elevated temperatures. Journal of Materials Chemistry A, 2016, 4, 10914-10924.	10.3	44
35	Microwave-assisted single-surfactant templating synthesis of mesoporous zeolites. RSC Advances, 2016, 6, 54956-54963.	3.6	10
36	Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. Adsorption, 2016, 22, 581-588.	3.0	23

#	Article	IF	CITATIONS
37	Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015, 14, 763-774.	27.5	838
38	CO ₂ Adsorption on Amine-Functionalized Periodic Mesoporous Benzenesilicas. ACS Applied Materials & Interfaces, 2015, 7, 6792-6802.	8.0	96
39	Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. Carbon, 2015, 82, 297-303.	10.3	126
40	Coconut shell-based microporous carbons for CO2 capture. Microporous and Mesoporous Materials, 2013, 180, 280-283.	4.4	161
41	Importance of small micropores in CO ₂ capture by phenolic resin-based activated carbon spheres. Journal of Materials Chemistry A, 2013, 1, 112-116.	10.3	383
42	Development of microporous carbons for CO2 capture by KOH activation of African palm shells. Journal of CO2 Utilization, 2013, 2, 35-38.	6.8	122
43	Graphitic Mesoporous Carbons with Embedded Prussian Blue-Derived Iron Oxide Nanoparticles Synthesized by Soft Templating and Low-Temperature Graphitization. Chemistry of Materials, 2013, 25, 2803-2811.	6.7	67
44	Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. Carbon, 2013, 65, 334-340.	10.3	130
45	Standard nitrogen adsorption data for α-alumina and their use for characterization of mesoporous alumina-based materials. Adsorption, 2013, 19, 475-481.	3.0	13
46	Effect of acid concentration on pore size in polymer-templated mesoporous alumina. Journal of Materials Chemistry, 2012, 22, 86-92.	6.7	43
47	Poly(ethylene oxide)–Poly(butylene oxide)–Poly(ethylene oxide)-Templated Synthesis of Mesoporous Alumina: Effect of Triblock Copolymer and Acid Concentration. ACS Applied Materials & Interfaces, 2012, 4, 3738-3744.	8.0	15
48	New opportunities in Stöber synthesis: preparation of microporous and mesoporous carbon spheres. Journal of Materials Chemistry, 2012, 22, 12636.	6.7	120
49	Effect of cosolvent organic molecules on the adsorption and structural properties of soft-templated ordered mesoporous alumina. Journal of Colloid and Interface Science, 2012, 367, 129-134.	9.4	14
50	Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. Chemistry of Materials, 2011, 23, 1147-1157.	6.7	268
51	Anatase TiO ₂ with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications. Chemistry of Materials, 2011, 23, 4085-4093.	6.7	669
52	Adsorption and structural properties of ordered mesoporous alumina synthesized in the presence of F127 block copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 121-125.	4.7	32
53	Effect of nonionic structure-directing agents on adsorption and structural properties of mesoporous alumina. Journal of Materials Chemistry, 2011, 21, 9066.	6.7	44
54	Soft-templating synthesis and properties of mesoporous alumina–titania. Microporous and Mesoporous Materials, 2010, 128, 180-186.	4.4	47

Alexandre A S Gonçalves

#	Article	IF	CITATIONS
55	Synthesis of Mesoporous Alumina from Boehmite in the Presence of Triblock Copolymer. ACS Applied Materials & Interfaces, 2010, 2, 588-593.	8.0	81
56	Mesoporous metal organic framework–boehmite and silica composites. Chemical Communications, 2010, 46, 6798.	4.1	74
57	Ordered Mesoporous Alumina-Supported Metal Oxides. Journal of the American Chemical Society, 2008, 130, 15210-15216.	13.7	346
58	Temperature-Programmed Microwave-Assisted Synthesis of SBA-15 Ordered Mesoporous Silica. Journal of the American Chemical Society, 2006, 128, 14408-14414.	13.7	135
59	Improvement of the Krukâ^'Jaroniecâ^'Sayari Method for Pore Size Analysis of Ordered Silicas with Cylindrical Mesopores. Langmuir, 2006, 22, 6757-6760.	3.5	275
60	Gas Adsorption Characterization of Ordered Organicâ^'Inorganic Nanocomposite Materials. Chemistry of Materials, 2001, 13, 3169-3183.	6.7	3,036
61	Colloidal Imprinting:Â A Novel Approach to the Synthesis of Mesoporous Carbons. Journal of the American Chemical Society, 2001, 123, 9208-9209.	13.7	231
62	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968.	6.7	1,280
63	Functionalized MCM-41 and CeMCM-41 Materials Synthesized via Interfacial Reactions. Journal of Physical Chemistry B, 2000, 104, 9713-9719.	2.6	33