Stanislav Hasenöhrl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5461780/publications.pdf

Version: 2024-02-01

98 445
papers citations

996975

10
15
h-index
g-index

99 99
all docs docs citations

99 times ranked 378 citing authors

#	Article	IF	CITATIONS
1	Investigation of a nanostructured GaP/MoS ₂ p-n heterojunction photodiode. AIP Advances, 2022, 12, 065004.	1.3	1
2	Near-field analysis of GaP nanocones. Applied Surface Science, 2021, 539, 148213.	6.1	O
3	Analysis and Modeling of Vertical Current Conduction and Breakdown Mechanisms in Semi-Insulating GaN Grown on GaN: Role of Deep Levels. IEEE Transactions on Electron Devices, 2021, 68, 2365-2371.	3.0	5
4	InN crystal habit, structural, electrical, and optical properties affected by sapphire substrate nitridation in N-polar InN/InAlN heterostructures. Semiconductor Science and Technology, 2021, 36, 075025.	2.0	0
5	Invited: Polarization engineering in GaN-based normally-off transistors. , 2021, , .		O
6	Growth evolution of N-polar indium-rich InAlN layer on c-sapphire via strain relaxation by ultrathin AlON interlayer. Applied Surface Science, 2020, 502, 144086.	6.1	8
7	A systematic study of MOCVD reactor conditions and Ga memory effect on properties of thick InAl(Ga)N layers: a complete depth-resolved investigation. CrystEngComm, 2020, 22, 130-141.	2.6	2
8	Growth and Properties of Nâ€Polar InN/InAlN Heterostructures. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000197.	1.8	4
9	Twinned nanoparticle structures for surface enhanced Raman scattering. Applied Surface Science, 2020, 528, 146548.	6.1	4
10	Investigation of interfaces and threshold voltage instabilities in normally-off MOS-gated InGaN/AlGaN/GaN HEMTs. Applied Surface Science, 2020, 528, 146824.	6.1	3
11	Semi-insulating GaN for vertical structures: role of substrate selection and growth pressure. Materials Science in Semiconductor Processing, 2020, 118, 105203.	4.0	7
12	Morphology, Crystalline Quality, and Optical Properties of MOCVD-grown InN/InAlN Heterostructures. , 2020, , .		1
13	Nanocone structures with limited interspace grown by MOVPE. Lithuanian Journal of Physics, 2020, 59, .	0.4	1
14	Improvement of GaN crystalline quality by SiN _{<i>x</i>>} layer grown by MOVPE. Lithuanian Journal of Physics, 2020, 59, .	0.4	0
15	InGaN/(GaN)/AlGaN/GaN normally-off metal-oxide-semiconductor high-electron mobility transistors with etched access region. Japanese Journal of Applied Physics, 2019, 58, SCCD21.	1.5	3
16	Evidence of relationship between strain and In-incorporation: Growth of N-polar In-rich InAlN buffer layer by OMCVD. Journal of Applied Physics, 2019, 125, or thick ampliment	2.5	10
17	xmins:mmi="http://www.w3.org/1998/iviath/iviathivit" altimg="si2.gir" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">I</mml:mi><mml:mi mathvariant="normal">n</mml:mi>x</mml:mrow></mml:msub><mml:mrow></mml:mrow>x</mml:mrow> <td>6.1 cmml:mi</td> <td>9</td>	6.1 cmml:mi	9
18	Generation of hole gas in non-inverted InAl(Ga)N/GaN heterostructures. Applied Physics Express, 2019, 12, 014001.	2.4	5

#	Article	IF	CITATIONS
19	Nanorods and nanocones for advanced sensor applications. Applied Surface Science, 2018, 461, 61-65.	6.1	11
20	Determination of Secondary-lons Yield in SIMS Depth Profiling of Si, Mg, and C lons Implanted Gan Epitaxial Layers. , 2018 , , .		2
21	Characterization of interface states in AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with HfO2 gate dielectric grown by atomic layer deposition. Applied Surface Science, 2018, 461, 255-259.	6.1	11
22	Non-conventional scans in high-resolution X-ray diffraction analysis of epitaxial systems. Applied Surface Science, 2018, 461, 23-32.	6.1	5
23	GaP nanocones covered with silver nanoparticles for surface-enhanced Raman spectroscopy. Applied Surface Science, 2018, 461, 149-153.	6.1	8
24	Optical and mechanical properties of a compact ZnO layer with embedded GaP nanowires. Applied Surface Science, 2017, 395, 180-184.	6.1	2
25	Reinforcement role of GaP nanowires in a ZnO layer prepared by RF sputtering. Vacuum, 2017, 138, 218-223.	3 . 5	1
26	Formation of a compact Ga-doped ZnO layer over vertical free-standing GaP nanowires. Applied Surface Science, 2017, 395, 162-165.	6.1	1
27	Methanol sensor for integration with GaP nanowire photocathode. , 2017, , .		0
28	Growth and properties of core-shell GaP/ZnO nanowires. , 2014, , .		0
29	Annealing of gold nanoparticles on GaP(111)B: initial stage of GaP nanowire growth. Physica Status Solidi - Rapid Research Letters, 2014, 8, 321-324.	2.4	0
30	Analysis of the core–shell interface between zinc-blende GaP and wurtzite ZnO. Solid-State Electronics, 2014, 100, 7-10.	1.4	4
31	Columnar microstructure of the ZnO shell layer deposited on the GaP nanowires. Applied Surface Science, 2014, 312, 162-166.	6.1	5
32	Properties of individual GaP/ZnO core-shell nanowires with radial PN junction., 2013,,.		0
33	Structural and optical properties of individual GaP/ZnO core–shell nanowires. Vacuum, 2013, 98, 106-110.	3 . 5	6
34	Zinc-doped gallium phosphide nanowires for photovoltaic structures. Applied Surface Science, 2013, 269, 72-76.	6.1	18
35	Ohmic contacts to p-GaP/n-ZnO core/shell nanowires based on Au metallization. Applied Surface Science, 2013, 269, 60-64.	6.1	7
36	Magnetic properties of InMnAs nanodots prepared by MOVPE. Journal of Magnetism and Magnetic Materials, 2013, 327, 20-23.	2.3	4

#	Article	IF	Citations
37	Predefined planar structures in semiconductor surfaces patterned by NSOM lithography. Proceedings of SPIE, $2013, , .$	0.8	О
38	Photoluminescence of single GaP/ZnO core-shell nanowires. , 2012, , .		0
39	GaP/ZnO nanowires with a radial pn heterojunction. , 2012, , .		0
40	Deposition and properties of ZnO thin films on GaP nanowires. , 2012, , .		0
41	Electrical properties of individual GaP nanowires doped by zinc. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2505-2509.	1.8	6
42	Preparation of thin Ga-doped ZnO layers for core–shell GaP/ZnO nanowires. Applied Surface Science, 2012, 258, 7607-7611.	6.1	15
43	TEM analysis of InMnAs layers and dots prepared by low pressure MOVPE. Vacuum, 2012, 86, 657-660.	3.5	4
44	MOVPE growth and properties of light emitting diodes with an incorporated InMnAs ferromagnetic layer. Journal of Crystal Growth, 2011, 315, 78-81.	1.5	7
45	Role of growth mode in the formation of magnetic properties of InMnAs grown by MOVPE. Journal of Crystal Growth, 2011, 318, 576-579.	1.5	2
46	Epitaxial Growth of GaP/InxGa1-xP (xIn â%¥ 0.27) Virtual Substrate for Optoelectronic Applications. Journal of Electrical Engineering, 2011, 62, 93-98.	0.7	3
47	Study of the growth and structural properties of InMnAs dots grown on high-index surfaces by MOVPE. Materials Science in Semiconductor Processing, 2010, 13, 167-172.	4.0	1
48	Dependence of Curie temperature on surface strain in InMnAs epitaxial structures. Applied Surface Science, 2010, 256, 5672-5675.	6.1	6
49	Design, preparation and properties of spin-LED structures based on InMnAs. , 2010, , .		0
50	OMVPE growth and characterization of Ga $<$ inf $>$ $1-x <$ /inf $>$ Mn $<$ inf $>$ As diluted magnetic semiconductor. , 2008, , .		0
51	InMnAs dots grown on GaAs surfaces etched via AlAs sacrificial layer. , 2008, , .		0
52	Role of the V–III ratio and growth rate in decomposition of In0.27Ga0.73P/GaP grown by MOVPE. Journal of Crystal Growth, 2007, 298, 76-80.	1.5	3
53	Photoluminescence and TEM characterization of (AlyGa1â€"y)1â€"xlnxP layers grown on graded buffers. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1503-1507.	0.8	0
54	Impact of growth conditions on the spatial non-uniformities of composition in InGaP epitaxial layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1419-1422.	0.8	3

#	Article	IF	Citations
55	Influence of surface strain on the MOVPE growth of InGaP epitaxial layers. Applied Physics A: Materials Science and Processing, 2007, 87, 511-516.	2.3	7
56	Investigation of graded InxGa1â^'xP buffer by Raman scattering method. Microelectronics Journal, 2006, 37, 487-490.	2.0	3
57	Spinodal-like decomposition of InGaP epitaxial layers grown on GaP substrates. Applied Surface Science, 2006, 252, 4178-4184.	6.1	3
58	SIMS and SEM analysis of In1â^'xâ^'yAlxGayP LED structure grown on InxGa1â^'xP graded buffer. Applied Surface Science, 2006, 252, 7279-7282.	6.1	5
59	Growth and characterisation of layers with composition close to crossover from direct to indirect band gap. Journal of Crystal Growth, 2005, 275, e1281-e1286.	1.5	12
60	Nano-patterning surfaces by the self-organized growth of ordered and strained epitaxial layers. Superlattices and Microstructures, 2004, 36, 123-131.	3.1	3
61	Resistivity and mobility in ordered InGaP grown by MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 382-387.	0.8	0
62	Micro-Raman study of InGaP composition grown on V-grooved substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 113, 111-116.	3.5	2
63	Material properties of graded composition InxGa1â^'xP buffer layers grown on GaP by organometallic vapor phase epitaxy. Journal of Crystal Growth, 2004, 272, 633-641.	1.5	15
64	Wet-etch bulk micromachining of (100) InP substrates. Journal of Micromechanics and Microengineering, 2004, 14, 1205-1214.	2.6	15
65	Anisotropy in transport properties of ordered strained InGaP. Journal of Crystal Growth, 2003, 248, 369-374.	1.5	3
66	Anisotropic surface structure in ordered strained InGaP. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 134-138.	3.5	9
67	Effect of strain and ordering on the band-gap energy of InGaP. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 88, 139-142.	3.5	7
68	Hall bar device processing on patterned substrates using optical lithography. Sensors and Actuators A: Physical, 2002, 101, 150-155.	4.1	8
69	Technology and performance of 150nm gate length InGaP/InGaAs/GaAs pHEMTs. Vacuum, 2001, 61, 323-327.	3.5	4
70	InGaAs/InGaP HEMTs: technological optimization and analytical modelling. Vacuum, 2001, 61, 333-337.	3.5	1
71	Photoluminescence characterization of InGaP/GaAs/InGaP quantum wires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 80, 184-187.	3.5	2
72	OMCVD growth of InP and InGaAs on InP non-planar substrates patterned with {110} quasi facets. Journal of Crystal Growth, 2001, 233, 141-149.	1.5	6

#	Article	IF	CITATIONS
7 3	Influence of tensile and compressive strain on the band gap energy of ordered InGaP. Applied Physics Letters, 2001, 79, 2758-2760.	3.3	10
74	Formation of interfaces in InGaP/GaAs/InGaP quantum wells. Journal of Crystal Growth, 2000, 212, 21-28.	1.5	23
7 5	Crystallographic dependence of OMVPE InGaAs/InP lateral growth on patterned (100) InP substrates prepared by wet etching. Thin Solid Films, 2000, 380, 105-107.	1.8	7
76	Effects of inhomogeneities and ordering in InGaP/GaAs system grown by MOVPE. Materials Chemistry and Physics, 2000, 66, 246-252.	4.0	10
77	InGaP/GaAs/InGaP quantum wires grown on pre-patterned substrates by MOVPE. Microelectronic Engineering, 2000, 51-52, 11-17.	2.4	4
78	Approaching the pT range with a 2DEG InGaAs/InP Hall sensor at 77 K. Microelectronic Engineering, 2000, 51-52, 333-342.	2.4	10
79	Highly disordered two-dimensional electron system in a weak magnetic field. Europhysics Letters, 1999, 45, 374-380.	2.0	1
80	Electrical and morphological properties of ordered InxGa1â^'xP. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 66, 102-105.	3.5	0
81	SEM and AFM characterisation of high-mesa patterned InP substrates prepared by wet etching. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 66, 15-20.	3.5	5
82	Preparation of stair-step grooves by wet etching of AlAs/GaAs heterostructures and MOCVD growth of QWR. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 65, 106-110.	3.5	1
83	Sulphur doping of GaSb grown by atmospheric pressure MOVPE. Journal of Crystal Growth, 1998, 183, 69-74.	1.5	3
84	MOCVD growth of InxGa1â^'xAs/GaAs multiple quantum well and superlattice structures for optical modulators. Solid-State Electronics, 1998, 42, 263-267.	1.4	2
85	Characterisation of InGaAs/InP microscopic Hall probe arrays with a 2DEG active layer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1998, 51, 188-191.	3.5	2
86	Out-of-Plane Weak Localization in Two-Dimensional Electron Structures. Physical Review Letters, 1998, 80, 4020-4023.	7.8	7
87	Resistivity anisotropy in ordered InxGa1â°'xP grown at 640 °C. Applied Physics Letters, 1998, 73, 369-371.	3.3	13
88	Preparation of Stair-Step Grooves by Wet Etching of AlAs/GaAs Heterostructures & MOCVD Growth of QWR., 1998,, 203-206.		O
89	Testing Superconducting Tapes by a 2DEG Hall Probe Array. , 1998, , 277-280.		0
90	Preparation of Microscopic Hall Probes and Arrays. , 1998, , 273-276.		0

#	Article	IF	Citations
91	A new approach towards low-pressure metalorganic vapor phase epitaxy of (AlGa)As using triethylgallium and dimethylethylaminealane. Journal of Crystal Growth, 1994, 145, 478-484.	1.5	12
92	Large activation of praseodymium in In0.53Ga0.47As. Semiconductor Science and Technology, 1993, 8, 747-749.	2.0	1
93	Praseodymium Dioxide Doping of In1â^'xGaxAsyP1â^'y Epilayer Grown with Liquid Phase Epitaxy. Materials Research Society Symposia Proceedings, 1993, 301, 27.	0.1	2
94	Gettering properties of PrO2 in In0.53Ga0.47As LPE growth. Journal of Crystal Growth, 1991, 110, 862-866.	1.5	21
95	InAlGaAs-InGaAs-InP RCE pin photodiode 1300 nm wavelength region. , 0, , .		5
96	Characterisation of 2DEG Hall probes in high magnetic field at 4.2 K., 0,,.		0
97	Resistivity anisotropy and surface morphology in ordered In/sub x/Ga/sub 1-x/P grown at 640°C. , 0, , .		0
98	Polar diagram of wet-etched [100] InP., 0,,.		2