Kiarash Khosrotehrani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5461707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resident vascular endothelial progenitor definition and function: the age of reckoning. Angiogenesis, 2022, 25, 15-33.	3.7	15
2	A Murine Kitl Allele Regulates Skin Mast Cell Density across 58 Collaborative Mouse Cross Strains. Journal of Investigative Dermatology, 2022, 142, 2275-2280.e4.	0.3	0
3	Chemoprevention of cutaneous squamous cell carcinoma and its precursors in solid organ transplant recipients using topical sirolimus: AÂrandomized, double-blind, placebo-controlled pilot trial. Journal of the American Academy of Dermatology, 2022, 87, 1163-1166.	0.6	4
4	Pathways from Diagnosis to Death from Keratinocyte Cancer in Kidney Transplant Recipients. Dermatology, 2022, 238, 1036-1043.	0.9	0
5	Hypothesised cutaneous sites of origin of stage <scp>III</scp> melanomas with unknown primary: a multiâ€centre study. International Journal of Cancer, 2022, , .	2.3	1
6	Diet quality is associated with primary melanoma thickness. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 1745-1750.	1.3	2
7	High-yield isolation of pure fetal endothelial colony forming cells and mesenchymal stem cells from the human full-term placenta. STAR Protocols, 2022, 3, 101354.	0.5	1
8	Patient age and risk of recurrence of primary melanoma at high risk of spread. British Journal of Dermatology, 2021, 184, 566-568.	1.4	3
9	Clinical utility of skin cancer and melanoma risk scores for population screening: TRoPICS study. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 1094-1098.	1.3	7
10	Whole-mount staining coupled to a UV-inducible basal cell carcinoma murine model. STAR Protocols, 2021, 2, 100329.	0.5	1
11	Increased melanoma recurrence in patients with multiple primary invasive melanomas. Journal of the American Academy of Dermatology, 2021, , .	0.6	0
12	Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nature Communications, 2021, 12, 2564.	5.8	26
13	Keratinocyte Cancer Mortality in Kidney Transplant Recipients. Transplantation, 2021, Publish Ahead of Print, .	0.5	3
14	Comparative performance of predictors of death from thin (≤·0 mm) melanoma. British Journal of Dermatology, 2021, 185, 849-851.	1.4	3
15	Evolution of skin cancer numbers in solid organ transplant recipients: a pilot study. Australasian Journal of Dermatology, 2021, , .	0.4	0
16	Subtype-Specific Analyses Reveal Infiltrative Basal Cell Carcinomas Are Highly Interactive with their Environment. Journal of Investigative Dermatology, 2021, 141, 2380-2390.	0.3	13
17	Forever Connected: The Lifelong Biological Consequences of Fetomaternal and Maternofetal Microchimerism. Clinical Chemistry, 2021, 67, 351-362.	1.5	29
18	Germline variants are associated with increased primary melanoma tumor thickness at diagnosis. Human Molecular Genetics, 2021, 29, 3578-3587.	1.4	3

#	Article	IF	CITATIONS
19	Combination of human endothelial colony-forming cells and mesenchymal stromal cells exert neuroprotective effects in the growth-restricted newborn. Npj Regenerative Medicine, 2021, 6, 75.	2.5	7
20	Training and retaining physician scientists in dermatology: Australia. JID Innovations, 2021, 2, 100074.	1.2	1
21	Clinicopathological factors associated with death from thin (≤·00 mm) melanoma. British Journal of Dermatology, 2020, 182, 927-931.	1.4	20
22	Anxiety and depression after diagnosis of high-risk primary cutaneous melanoma: a 4-year longitudinal study. Journal of Cancer Survivorship, 2020, 14, 712-719.	1.5	12
23	Multiplex melanoma families are enriched for polygenic risk. Human Molecular Genetics, 2020, 29, 2976-2985.	1.4	9
24	Regional Variation in Epidermal Susceptibility to UV-Induced Carcinogenesis Reflects Proliferative Activity of Epidermal Progenitors. Cell Reports, 2020, 31, 107702.	2.9	9
25	Ectopic expression of SOX18 in Basal cell carcinoma negatively regulates tumour progression. Journal of Dermatological Science, 2020, 98, 179-185.	1.0	3
26	Patterns of Omega-3 and Omega-6 Fatty Acid Dietary Intake and Melanoma Thickness at Diagnosis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1647-1653.	1.1	4
27	Statins may reduce disease recurrence in patients with ulcerated primary melanoma. British Journal of Dermatology, 2020, 183, 1049-1055.	1.4	10
28	Murine dorsal hair type is genetically determined by polymorphisms in candidate genes that influence BMP and WNT signalling. Experimental Dermatology, 2020, 29, 450-461.	1.4	2
29	Early detection of melanoma: a consensus report from the Australian Skin and Skin Cancer Research Centre Melanoma Screening Summit. Australian and New Zealand Journal of Public Health, 2020, 44, 111-115.	0.8	30
30	Prognostic implications of biopsy with tumor transection for patients with high-risk primary melanoma. Journal of the American Academy of Dermatology, 2020, 82, 1521-1524.	0.6	2
31	Longâ€ŧerm deaths from melanoma according to tumor thickness at diagnosis. International Journal of Cancer, 2020, 147, 1391-1396.	2.3	16
32	Survival in patients with multiple primary melanomas: Systematic review and meta-analysis. Journal of the American Academy of Dermatology, 2020, 83, 1406-1414.	0.6	5
33	Secretome Components from Faecalibacterium prausnitzii Strains A2-165 and AHMP21 Modulate Cutaneous Wound Inflammation. Journal of Investigative Dermatology, 2020, 140, 2312-2315.e6.	0.3	9
34	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	9.4	138
35	Survival of patients with early invasive melanoma down-staged under the new eighth edition of the American Joint Committee on Cancer staging system. Journal of the American Academy of Dermatology, 2019, 80, 272-274.	0.6	11
36	Management of organ transplant recipients attending a highâ€ŧhroughput skin cancer surgery and surveillance clinic in Queensland. British Journal of Dermatology, 2019, 180, 631-636.	1.4	15

#	Article	IF	CITATIONS
37	Level of contact hypersensitivity response to diphencyprone and keratinocyte cancer. Journal of the European Academy of Dermatology and Venereology, 2019, 33, 2101-2105.	1.3	1
38	Single-Cell Transcriptional Profiling of Aortic Endothelium Identifies a Hierarchy from Endovascular Progenitors to Differentiated Cells. Cell Reports, 2019, 27, 2748-2758.e3.	2.9	96
39	Risk of Melanoma Recurrence After Diagnosis of a High-Risk Primary Tumor. JAMA Dermatology, 2019, 155, 688.	2.0	74
40	The effects of a multidisciplinary highâ€ŧhroughput skin clinic on healthcare costs of organ transplant recipients. Journal of the European Academy of Dermatology and Venereology, 2019, 33, 1290-1296.	1.3	10
41	Sun protection behavior after diagnosis of high-risk primary melanoma and risk of a subsequent primary. Journal of the American Academy of Dermatology, 2019, 80, 139-148.e4.	0.6	13
42	Endovascular progenitors infiltrate melanomas and differentiate towards a variety of vascular beds promoting tumor metastasis. Nature Communications, 2019, 10, 18.	5.8	41
43	Immunosuppression Agent Cyclosporine Reduces Self-Renewal and Vessel Regeneration Potentiation of Human Endothelial Colony Forming Cells. Stem Cells Translational Medicine, 2019, 8, 162-168.	1.6	8
44	R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. ELife, 2019, 8, .	2.8	35
45	Past stem cells and finally in transit: <scp>SLC</scp> 1A3 instructs skin niche coupling. EMBO Journal, 2018, 37, .	3.5	2
46	Keratinocyte Sonic Hedgehog Upregulation Drives the Development of Giant Congenital Nevi via Paracrine Endothelin-1ASecretion. Journal of Investigative Dermatology, 2018, 138, 893-902.	0.3	9
47	Accelerated Endothelial to Mesenchymal Transition Increased Fibrosis via Deleting Notch Signaling in Wound Vasculature. Journal of Investigative Dermatology, 2018, 138, 1166-1175.	0.3	29
48	Meso-Endothelial Bipotent Progenitors from Human Placenta Display Distinct Molecular and Cellular Identity. Stem Cell Reports, 2018, 10, 890-904.	2.3	27
49	Interleukinâ€23 regulates interleukinâ€17 expression in wounds, and its inhibition accelerates diabetic wound healing through the alteration of macrophage polarization. FASEB Journal, 2018, 32, 2086-2094.	0.2	45
50	Clustering of prevention behaviours in patients with highâ€risk primary melanoma. Psycho-Oncology, 2018, 27, 1442-1449.	1.0	4
51	The Small Molecule NLRP3 Inflammasome Inhibitor MCC950 Does Not Alter Wound Healing in Obese Mice. International Journal of Molecular Sciences, 2018, 19, 3289.	1.8	8
52	Fetal Endothelial Progenitors and Mesenchymal Stem Cells From the Human Term Placenta. , 2018, , 131-140.		0
53	Temporal Regulation of Natural Killer T Cell Interferon Gamma Responses by β-Catenin-Dependent and -Independent Wnt Signaling. Frontiers in Immunology, 2018, 9, 483.	2.2	25
54	Whole-Mount Immunofluorescent Staining Coupled to Multicolor Lineage Tracing Model for Analyzing the Spatiotemporal Organization of Epidermal Stem Cells. Methods in Molecular Biology, 2018, 1879, 111-118.	0.4	2

#	Article	IF	CITATIONS
55	Increase in preventive behaviour by organ transplant recipients after sun protection information in a skin cancer surveillance clinic. British Journal of Dermatology, 2018, 179, 1195-1196.	1.4	13
56	Genetic variation in the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway affects contact hypersensitivity responses. Journal of Allergy and Clinical Immunology, 2018, 142, 981-984.e7.	1.5	2
57	<i>lgf1r</i> signalling acts on the anagenâ€ŧoâ€catagen transition in the hair cycle. Experimental Dermatology, 2017, 26, 785-791.	1.4	13
58	Epidermal YAP2-5SA-ΔC Drives β-Catenin Activation to Promote Keratinocyte Proliferation in Mouse Skin InÂVivo. Journal of Investigative Dermatology, 2017, 137, 716-726.	0.3	17
59	Response to Asgari. Journal of Investigative Dermatology, 2017, 137, 965-966.	0.3	0
60	Functional Definition of Progenitors Versus Mature Endothelial Cells Reveals Key SoxF-Dependent Differentiation Process. Circulation, 2017, 135, 786-805.	1.6	122
61	Dominant-negative <i>Sox18</i> function inhibits dermal papilla maturation and differentiation in all murine hair types. Development (Cambridge), 2017, 144, 1887-1895.	1.2	34
62	Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Translational Medicine, 2017, 6, 1316-1320.	1.6	358
63	Endosteal-like extracellular matrix expression on melt electrospun written scaffolds. Acta Biomaterialia, 2017, 52, 145-158.	4.1	58
64	Tell me about your stemness. l'll give your cancer risk!. Cell Death and Differentiation, 2017, 24, 6-7.	5.0	1
65	Melanoma during pregnancy: Level of evidence and principles of precaution. Journal of the American Academy of Dermatology, 2017, 76, e29-e30.	0.6	2
66	183 Genome wide association identifies MAPKinase pathway regulators as key genetic determinants of allergic contact dermatitis. Journal of Investigative Dermatology, 2017, 137, S224.	0.3	0
67	662 Deletion of Notch signalling in the vasculature accelerates Endothelial to Mesenchymal Transition in skin wound healing. Journal of Investigative Dermatology, 2017, 137, S306.	0.3	0
68	524 Regional variation in epidermal susceptibility to ultraviolet induced carcinogenesis reflects proliferative activity of epidermal progenitors. Journal of Investigative Dermatology, 2017, 137, S282.	0.3	0
69	Mesenchymal stem/stromal cells enhance engraftment, vasculogenic and pro-angiogenic activities of endothelial colony forming cells in immunocompetent hosts. Scientific Reports, 2017, 7, 13558.	1.6	33
70	Associations of Statins and Diabetes withÂDiagnosis of Ulcerated CutaneousÂMelanoma. Journal of Investigative Dermatology, 2017, 137, 2599-2605.	0.3	12
71	Fetal Bone Marrowâ€Đerived Mesenchymal Stem/Stromal Cells Enhance Humanization and Bone Formation of BMP7 Loaded Scaffolds. Biotechnology Journal, 2017, 12, 1700414.	1.8	9
72	New insights into naevoid melanomas: a clinicopathological reassessment. Histopathology, 2017, 71, 943-950.	1.6	13

#	Article	IF	CITATIONS
73	Use of support services in a sample of patients with highâ€risk primary melanomas in urban, regional and rural Queensland. Australian and New Zealand Journal of Public Health, 2017, 41, 315-319.	0.8	5
74	Prognostic importance of a second invasive primary melanoma according to tumour stage. British Journal of Dermatology, 2017, 177, e336-e337.	1.4	3
75	Priming of endothelial colonyâ€forming cells in a mesenchymal niche improves engraftment and vasculogenic potential by initiating mesenchymal transition orchestrated by NOTCH signaling. FASEB Journal, 2017, 31, 610-624.	0.2	40
76	Variations in supportive care needs of patients after diagnosis of localised cutaneous melanoma: a 2-year follow-up study. Supportive Care in Cancer, 2017, 25, 93-102.	1.0	9
77	Oncogenes and morphogens: intricacies of targeted therapy in cutaneous basal cell carcinoma. British Journal of Dermatology, 2017, 177, 1472-1473.	1.4	Ο
78	5.11 Engineering the Haematopoietic Stem Cell Niche In Vitro. , 2017, , 187-199.		1
79	Defining tissue resident vascular stem cells. Oncotarget, 2017, 8, 84618-84619.	0.8	1
80	In vitro Co-culture of Mesenchymal Stem Cells and Endothelial Colony Forming Cells. Bio-protocol, 2017, 7, e2587.	0.2	2
81	A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. ELife, 2017, 6, .	2.8	57
82	Molecular markers to complement sentinel node status in predicting survival in patients with high-risk locally invasive melanoma. International Journal of Cancer, 2016, 139, 664-672.	2.3	7
83	Reply to Metaâ€analysis concerning mortality for pregnancyâ€associated melanoma. Journal of the European Academy of Dermatology and Venereology, 2016, 30, e106-e107.	1.3	1
84	Perinatal Tissue-Derived Endothelial Progenitor Cells. Pancreatic Islet Biology, 2016, , 65-80.	0.1	2
85	STAT5 Activation in the Dermal Papilla IsÂImportant for Hair Follicle Growth PhaseÂInduction. Journal of Investigative Dermatology, 2016, 136, 1781-1791.	0.3	43
86	ST2 receptor invalidation maintains wound inflammation, delays healing and increases fibrosis. Experimental Dermatology, 2016, 25, 71-74.	1.4	23
87	Diagnosis of an additional <i>in situ</i> melanoma does not influence survival for patients with a single invasive melanoma: A registryâ€based followâ€up study. Australasian Journal of Dermatology, 2016, 57, 57-60.	0.4	7
88	Concise Review: Functional Definition of Endothelial Progenitor Cells: A Molecular Perspective. Stem Cells Translational Medicine, 2016, 5, 1302-1306.	1.6	43
89	Bimodal behaviour of interfollicular epidermal progenitors regulated by hair follicle position and cycling. EMBO Journal, 2016, 35, 2658-2670.	3.5	41
90	Ten-Year Survival after Multiple Invasive Melanomas Is Worse than after a Single Melanoma: a Population-Based Study. Journal of Investigative Dermatology, 2016, 136, 2270-2276.	0.3	45

#	Article	IF	CITATIONS
91	Self-Renewal and High Proliferative Colony Forming Capacity of Late-Outgrowth Endothelial Progenitors Is Regulated by Cyclin-Dependent Kinase Inhibitors Driven by Notch Signaling. Stem Cells, 2016, 34, 902-912.	1.4	39
92	Clinical and biological determinants of melanoma progression: Should all be considered for clinical management?. Australasian Journal of Dermatology, 2016, 57, 175-181.	0.4	8
93	A molecular classification of human mesenchymal stromal cells. PeerJ, 2016, 4, e1845.	0.9	41
94	<i>PARP1</i> polymorphisms play opposing roles in melanoma occurrence and survival. International Journal of Cancer, 2015, 136, 2488-2489.	2.3	7
95	Intrauterine Bone Marrow Transplantation in Osteogenesis Imperfecta Mice Yields Donor Osteoclasts and Osteomacs but Not Osteoblasts. Stem Cell Reports, 2015, 5, 682-689.	2.3	12
96	Prospective study of patterns of surgical management in adults with primary cutaneous melanoma at high risk of spread, in Queensland, Australia. Journal of Surgical Oncology, 2015, 112, 359-365.	0.8	27
97	Supportive care needs, anxiety, depression and quality of life amongst newly diagnosed patients with localised invasive cutaneous melanoma in Queensland, Australia. Psycho-Oncology, 2015, 24, 763-770.	1.0	49
98	Increased mortality for pregnancyâ€associated melanoma: systematic review and metaâ€analysis. Journal of the European Academy of Dermatology and Venereology, 2015, 29, 1457-1466.	1.3	54
99	Does Pregnancy After a Diagnosis of Melanoma Affect Prognosis? Systematic Review and Meta-analysis. Dermatologic Surgery, 2015, 41, 875-882.	0.4	25
100	Lack of Evidence From a Transgenic Mouse Model that the Activation and Migration of Melanocytes to the Epidermis after Neonatal UVR Enhances Melanoma Development. Journal of Investigative Dermatology, 2015, 135, 2897-2900.	0.3	3
101	Fetal Endothelial and Mesenchymal Progenitors From the Human Term Placenta: Potency and Clinical Potential. Stem Cells Translational Medicine, 2015, 4, 419-423.	1.6	19
102	Survival outcomes in patients with multiple primary melanomas. Journal of the European Academy of Dermatology and Venereology, 2015, 29, 2120-2127.	1.3	21
103	Melanoma survival is superior in females across all tumour stages but is influenced by age. Archives of Dermatological Research, 2015, 307, 731-740.	1.1	33
104	Microchimerism in Mouse Pregnancy. , 2014, , 251-258.		1
105	Transgenic Flash Mice for In Vivo Quantitative Monitoring of Canonical Wnt Signaling to Track Hair Follicle Cycle Dynamics. Journal of Investigative Dermatology, 2014, 134, 1519-1526.	0.3	20
106	Biphasic recruitment of microchimeric fetal mesenchymal cells in fibrosis following acute kidney injury. Kidney International, 2014, 85, 600-610.	2.6	11
107	Differential Effects of Ultraviolet Irradiation in Neonatal versus Adult Mice Are Not Explained by Defective Macrophage or Neutrophil Infiltration. Journal of Investigative Dermatology, 2014, 134, 1991-1997.	0.3	6
108	Concise Review: Understanding Clonal Dynamics in Homeostasis and Injury Through Multicolor Lineage Tracing. Stem Cells, 2014, 32, 3046-3054.	1.4	24

#	Article	IF	CITATIONS
109	Multiple squamous cell carcinomas following introduction of nilotinib. Clinical and Experimental Dermatology, 2014, 39, 791-794.	0.6	5
110	Novel isolation strategy to deliver pure fetal-origin and maternal-origin mesenchymal stem cell (MSC) populations from human term placenta. Placenta, 2014, 35, 969-971.	0.7	38
111	Feto-maternal allo-immunity, regulatory T cells and predisposition to auto-immunity. Chimerism, 2014, 5, 59-62.	0.7	10
112	Origin of Langerhans cells in normal skin and chronic GVHD after hematopoietic stem-cell transplantation. Experimental Dermatology, 2014, 23, 75-77.	1.4	7
113	In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective. Vascular Cell, 2014, 6, 13.	0.2	79
114	Selective organ specific inflammation in offspring harbouring microchimerism from strongly alloreactive mothers. Journal of Autoimmunity, 2014, 50, 51-58.	3.0	17
115	Nomograms to predict recurrence and survival in stage IIIB and IIIC melanoma after therapeutic lymphadenectomy. European Journal of Cancer, 2014, 50, 1301-1309.	1.3	24
116	In Vivo Imaging Reveals a Pioneer Wave of Monocyte Recruitment into Mouse Skin Wounds. PLoS ONE, 2014, 9, e108212.	1.1	46
117	Increase lymphangiogenesis in melanoma during pregnancy: correlation with the prolactin signalling pathway. Journal of the European Academy of Dermatology and Venereology, 2013, 27, e144-5.	1.3	13
118	Mesenchymal stem cell therapy in skin: why and what for?. Experimental Dermatology, 2013, 22, 307-310.	1.4	43
119	Pregnancy-acquired fetal progenitor cells. Journal of Reproductive Immunology, 2013, 97, 27-35.	0.8	20
120	Patients undergoing lymphadenectomy for stage III melanomas of known or unknown primary site do not differ in outcome. International Journal of Cancer, 2013, 133, 3000-3007.	2.3	14
121	Woundâ€associated macrophages control collagen 1α2 transcription during the early stages of skin wound healing. Experimental Dermatology, 2013, 22, 143-145.	1.4	30
122	Prospective Surface Marker-Based Isolation and Expansion of Fetal Endothelial Colony-Forming Cells From Human Term Placenta. Stem Cells Translational Medicine, 2013, 2, 839-847.	1.6	63
123	Reduced II17a Expression Distinguishes a Ly6c lo MHCII hi Macrophage Population Promoting Wound Healing. Journal of Investigative Dermatology, 2013, 133, 783-792.	0.3	84
124	UVB-Induced Melanocyte Proliferation in Neonatal Mice Driven by CCR2-Independent Recruitment of Ly6clowMHCIIhi Macrophages. Journal of Investigative Dermatology, 2013, 133, 1803-1812.	0.3	34
125	Distant Mesenchymal Progenitors Contribute to Skin Wound Healing and Produce Collagen: Evidence from a Murine Fetal Microchimerism Model. PLoS ONE, 2013, 8, e62662.	1.1	47
126	Fetal microchimerism in skin wound healing. Chimerism, 2012, 3, 45-47.	0.7	14

#	Article	IF	CITATIONS
127	Fetal Microchimeric Cells in a Fetus-Treats-Its-Mother Paradigm Do Not Contribute to Dystrophin Production in Serially Parous mdx Females. Stem Cells and Development, 2012, 21, 2809-2816.	1.1	8
128	Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. FASEB Journal, 2012, 26, 149-157.	0.2	53
129	Calpain Activity Is Essential in Skin Wound Healing and Contributes to Scar Formation. PLoS ONE, 2012, 7, e37084.	1.1	51
130	Increased Risk for Nonmelanoma Skin Cancers in Patients Who Receive Thiopurines for Inflammatory Bowel Disease. Gastroenterology, 2011, 141, 1621-1628.e5.	0.6	431
131	Pregnancy Promotes Melanoma Metastasis through Enhanced Lymphangiogenesis. American Journal of Pathology, 2011, 178, 1870-1880.	1.9	40
132	Specific maternal microchimeric T cells targeting fetal antigens in β cells predispose to auto-immune diabetes in the child. Journal of Autoimmunity, 2011, 36, 253-262.	3.0	33
133	Superficial Spreading-Like Melanoma in Arfâ^'/â^'::Tyr-NrasQ61K::K14-Kitl Mice: Keratinocyte Kit Ligand Expression Sufficient to "Translocate―Melanomas from Dermis to Epidermis. Journal of Investigative Dermatology, 2011, 131, 1384-1387.	0.3	8
134	Can maternal microchimeric cells influence the fetal response toward self antigens?. Chimerism, 2011, 2, 71-77.	0.7	10
135	Can maternal microchimeric cells influence the fetal response toward self antigens?. Chimerism, 2011, 2, 71-7.	0.7	4
136	Limited functional capacity of microchimeric fetal hematopoietic progenitors acquired by mothers during pregnancy. Experimental Hematology, 2010, 38, 852-853.	0.2	5
137	Painful cutaneous nodules in a 57-year-old woman with human immunodeficiency virus infection. Clinical and Experimental Dermatology, 2010, 35, 333-334.	0.6	1
138	Fetal stem cell microchimerism: natural-born healers or killers?. Molecular Human Reproduction, 2010, 16, 869-878.	1.3	42
139	Differential roles of the pRb and Arf/p53 pathways in murine naevus and melanoma genesis. Pigment Cell and Melanoma Research, 2010, 23, 771-780.	1.5	39
140	Skin wound healing modulation by macrophages. International Journal of Clinical and Experimental Pathology, 2010, 3, 643-53.	0.5	162
141	Fetal cell microchimerism in cancer: a meaningful event?. Future Oncology, 2009, 5, 1441-1448.	1.1	2
142	Predictive Factors of Eczema-Like Eruptions among Patients without Cutaneous Psoriasis Receiving Infliximab: A Cohort Study of 92 Patients. Dermatology, 2009, 219, 263-267.	0.9	41
143	Two Observations Raising Questions about Risk Factors of Cutaneous Necrosis Induced by Terlipressin (Glypressin®). Dermatology, 2009, 218, 334-337.	0.9	25
144	Dermatological manifestations associated with pregnancy. Expert Review of Dermatology, 2009, 4, 329-340.	0.3	0

Kiarash Khosrotehrani

#	Article	IF	CITATIONS
145	Increased fetal cell microchimerism in high grade breast carcinomas occurring during pregnancy. International Journal of Cancer, 2009, 124, 1054-1059.	2.3	50
146	Fetal-cell microchimerism, lymphopoiesis, and autoimmunity. Archivum Immunologiae Et Therapiae Experimentalis, 2009, 57, 325-329.	1.0	15
147	Neonatal cases of infantile myofibromatosis do not derive from maternal cells transferred during pregnancy. British Journal of Dermatology, 2009, 160, 1356-1357.	1.4	4
148	CD34+ cells in maternal placental blood are mainly fetal in origin and express endothelial markers. Laboratory Investigation, 2009, 89, 915-923.	1.7	42
149	Fetal Microchimeric Cells Participate in Tumour Angiogenesis in Melanomas Occurring during Pregnancy. American Journal of Pathology, 2009, 174, 630-637.	1.9	77
150	Life-Threatening Dermatoses Occurring During Gestation. , 2009, , 175-180.		0
151	Early phase of maternal skin carcinogenesis recruits longâ€ŧerm engrafted fetal cells. International Journal of Cancer, 2008, 123, 2512-2517.	2.3	22
152	Neurofibromatosis 1: Analysis of the demand for prenatal diagnosis in a French cohort of 361 patients. American Journal of Medical Genetics, Part A, 2008, 146A, 159-165.	0.7	9
153	Healing of sickle cell ulcers during pregnancy: a favourable effect of foetal cell transfer?. Journal of the European Academy of Dermatology and Venereology, 2008, 22, 1256-1257.	1.3	4
154	Breast cancer stroma frequently recruits fetal derived cells during pregnancy. Breast Cancer Research, 2008, 10, R14.	2.2	78
155	Age at Diagnosis of Neurofibromatosis 1: An Audit of Practice. Dermatology, 2008, 216, 347-348.	0.9	3
156	Pregnancy allows the transfer and differentiation of fetal lymphoid progenitors into functional T and B cells in mothers. Journal of Immunology, 2008, 180, 3613.2-3613.	0.4	1
157	Pregnancy Allows the Transfer and Differentiation of Fetal Lymphoid Progenitors into Functional T and B Cells in Mothers. Journal of Immunology, 2008, 180, 889-897.	0.4	72
158	Significance of Erythema Nodosum and Pyoderma Gangrenosum in Inflammatory Bowel Diseases. Medicine (United States), 2008, 87, 281-293.	0.4	151
159	Maternal neoangiogenesis during pregnancy partly derives from fetal endothelial progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1871-1876.	3.3	86
160	Erythema Nodosum–like Eruption as a Manifestation of Azathioprine Hypersensitivity in Patients With Inflammatory Bowel Disease. Archives of Dermatology, 2007, 143, 744-8.	1.7	48
161	Fetal cells participate over time in the response to specific types of murine maternal hepatic injury. Human Reproduction, 2007, 22, 654-661.	0.4	87
162	Acute myelogenous leukemia in a patient receiving etanercept for psoriasis. Journal of the American Academy of Dermatology, 2007, 56, 169-170.	0.6	28

#	Article	IF	CITATIONS
163	Misleading pustular plaques of the lower limbs during Crohn's disease: two case reports. Journal of Medical Case Reports, 2007, 1, 109.	0.4	9
164	Spot Counting to Locate Fetal Cells in Maternal Blood and Tissue: A Comparison of Manual and Automated Microscopy. Microscopy Research and Technique, 2007, 70, 585-588.	1.2	18
165	Primary cutaneous follicular B-cell lymphoma arising at the site of radiotherapy for breast cancer. British Journal of Dermatology, 2007, 156, 198-199.	1.4	8
166	Idiopathic recurrent palmoplantar hidradenitis: a case with late onset and long-lasting course. Clinical and Experimental Dermatology, 2007, 32, 217-218.	0.6	6
167	Cellulitis due to Myroides odoratimimus in a patient with alcoholic cirrhosis. Clinical and Experimental Dermatology, 2007, 33, 071202194819001-???.	0.6	33
168	Presence of Chimeric Maternally Derived Keratinocytes in Cutaneous Inflammatory Diseases of Children: The Example of Pityriasis Lichenoides. Journal of Investigative Dermatology, 2006, 126, 345-348.	0.3	50
169	Feto-maternal cell trafficking. Stem Cell Reviews and Reports, 2006, 2, 111-116.	5.6	49
170	Feto-Maternal Cell Trafficking: A Transfer of Pregnancy Associated Progenitor Cells. Stem Cell Reviews and Reports, 2006, 2, 111-116.	5.6	42
171	Natural history of fetal cell microchimerism during and following murine pregnancy. Journal of Reproductive Immunology, 2005, 66, 1-12.	0.8	117
172	Subcutaneous neurofibromas are associated with mortality in neurofibromatosis 1: A cohort study of 703 patients. American Journal of Medical Genetics, Part A, 2005, 132A, 49-53.	0.7	73
173	The utility of an erythroblast scoring system and gender-independent short tandem repeat (STR) analysis for the detection of aneuploid fetal cells in maternal blood. Prenatal Diagnosis, 2005, 25, 586-591.	1.1	13
174	Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. Journal of Cell Science, 2005, 118, 1559-1563.	1.2	167
175	Absence of fetal cell microchimerism in cutaneous lesions of lupus erythematosus. Annals of the Rheumatic Diseases, 2005, 64, 159-160.	0.5	37
176	Skin Carcinoma Arising From Donor Cells in a Kidney Transplant Recipient. Cancer Research, 2005, 65, 1755-1760.	0.4	92
177	Microchimerism: Fears and Hopes. Dermatology, 2005, 210, 1-2.	0.9	3
178	Transfer of Fetal Cells With Multilineage Potential to Maternal Tissue. JAMA - Journal of the American Medical Association, 2004, 292, 75.	3.8	243
179	Fetal cell-free DNA circulates in the plasma of pregnant mice: relevance for animal models of fetomaternal trafficking. Human Reproduction, 2004, 19, 2460-2464.	0.4	37
180	Elective pregnancy termination and microchimerism: Comment on the article by Khosrotehrani et al. Arthritis and Rheumatism, 2004, 50, 3058-3059.	6.7	7

Kiarash Khosrotehrani

#	Article	IF	CITATIONS
181	The influence of fetal loss on the presence of fetal cell microchimerism: A systematic review. Arthritis and Rheumatism, 2003, 48, 3237-3241.	6.7	112
182	Sneddon Syndrome revealing dysfibrinogenemia. International Journal of Dermatology, 2003, 42, 561-562.	0.5	6
183	Cervical cancer and microchimerism. Obstetrics and Gynecology, 2003, 102, 774-781.	1.2	78
184	Medical management of neurofibromatosis 1: a cross-sectional study of 383 patients. Journal of the American Academy of Dermatology, 2003, 49, 440-444.	0.6	12
185	Clinical Risk Factors for Mortality in Patients With Neurofibromatosis 1. Archives of Dermatology, 2003, 139, 187-91.	1.7	47
186	Fetal cell microchimerism: helpful or harmful to the parous woman?. Current Opinion in Obstetrics and Gynecology, 2003, 15, 195-199.	0.9	51
187	Cervical Cancer and Microchimerism. Obstetrics and Gynecology, 2003, 102, 774-781.	1.2	40
188	Quality of Abstracts in 3 Clinical Dermatology Journals. Archives of Dermatology, 2003, 139, 589-93.	1.7	39
189	Combined FISH and Immunolabeling on Paraffin-Embedded Tissue Sections for the Study of Microchimerism. BioTechniques, 2003, 34, 242-244.	0.8	40
190	Characterization of HLA-G1, -G2, -G3, and -G4 isoforms transfected in a human melanoma cell line. Transplantation Proceedings, 2001, 33, 2360-2364.	0.3	37
191	HLA-G Expression in Atopic Dermatitis. Journal of Investigative Dermatology, 2001, 117, 750-752.	0.3	71