Giorgio Spiazzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5461255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MIMO Control of a High-Step-Up Isolated Bidirectional DC–DC Converter. IEEE Transactions on Industrial Electronics, 2022, 69, 4687-4696.	5.2	7
2	An Isolated Soft-Switched High-Power-Factor Rectifier Based on the Asymmetrical Half-Bridge Flyback Converter. IEEE Transactions on Industrial Electronics, 2022, 69, 6722-6731.	5.2	10
3	A Fast ON-State Voltage Measurement Circuit for Power Devices Characterization. IEEE Transactions on Power Electronics, 2022, 37, 4926-4930.	5.4	5
4	Analysis and Design of a 2 MHz GaN-based Active-Clamped Isolated SEPIC Converter for Low-Power Automotive Subnets. , 2022, , .		4
5	Extended Analysis of the Asymmetrical Half-Bridge Flyback Converter. IEEE Transactions on Power Electronics, 2021, 36, 7956-7964.	5.4	9
6	A Novel Integrated Step-Up Hybrid Converter With Wide Conversion Ratio. IEEE Transactions on Power Electronics, 2020, 35, 2764-2775.	5.4	18
7	Implementation and Experimental Evaluation of an Efficiency-Improved Modulation Technique for IBCI DC-DC Converters. , 2020, , .		6
8	Special Issue on Topologies, Modeling Methodologies, and Control Techniques for High-Frequency Power Conversion. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1967-1970.	3.7	0
9	Fast System to measure the dynamic onâ€resistance of onâ€wafer 600ÂV normally off GaN HEMTs in hardâ€switching application conditions. IET Power Electronics, 2020, 13, 2390-2397.	1.5	12
10	Comparative Study of 48V-based Low-Power Automotive Architectures. , 2020, , .		6
11	The Asymmetrical Half-Bridge Flyback Converter: a Reexamination. , 2020, , .		3
12	Nonisolated High-Step-up DC–DC Converter With Minimum Switch Voltage Stress. IEEE Transactions on Power Electronics, 2019, 34, 1470-1480.	5.4	27
13	Design Criteria and Modulation Strategies for Complete ZVS Operation of the Bidirectional Interleaved Boost Converter with Coupled Inductors. , 2019, , .		4
14	Reduced-Order Model for the Clamped-Resonant Interleaved Boost Converter. , 2019, , .		0
15	A 130-nm CMOS Dual Input-Polarity DC–DC Converter for Low-Power Applications. IEEE Solid-State Circuits Letters, 2019, 2, 211-214.	1.3	3
16	Clamped-Resonant Interleaved Boost Converter: Analysis and Design. , 2019, , .		2
17	A Multi-Phase Self-Reconfigurable Switched-Capacitor DC-DC Step-Up Converter Integrated in CMOS Technology. , 2019, , .		2
18	Applying Coupled Inductors to the Clamped-Resonant Interleaved Boost Converter. , 2019, , .		0

GIORGIO SPIAZZI

#	Article	IF	CITATIONS
19	A 130-nm CMOS Dual Input-Polarity DC–DC Converter for Low-Power Applications. , 2019, , .		Ο
20	Digital Current Control for a Bidirectional Interleaved Boost Converter with Coupled Inductors. , 2019, , .		3
21	Analysis and Performance Evaluation of the DAB and IBCI DC-DC Converter Topologies. , 2019, , .		2
22	A Matrix Presentation of State-Plane Analysis for a Broad Class of Series-Resonant Converters. IEEE Transactions on Power Electronics, 2018, 33, 10935-10945.	5.4	5
23	Bidirectional DC-DC Converter Topologies for Low-Voltage Battery Interface: Comparative Assessment. , 2018, , .		6
24	Three-Phase Three-Level Flying Capacitors Split-Source Inverters: Analysis and Modulation. IEEE Transactions on Industrial Electronics, 2017, 64, 4571-4580.	5.2	69
25	Non-isolated high step-up DC-DC converter with minimum switch voltage stress. , 2017, , .		4
26	Two-dimensional online efficiency optimization technique for dual active bridge converters. , 2016, , .		6
27	Three-level operation of the split-source inverter using the flying capacitors topology. , 2016, , .		9
28	Three-Phase Split-Source Inverter (SSI): Analysis and Modulation. IEEE Transactions on Power Electronics, 2016, 31, 7451-7461.	5.4	135
29	Modified modulation scheme of the buck-boost voltage source inverter for bidirectional power flow capability. , 2015, , .		5
30	Analysis of the Interleaved Isolated Boost Converter With Coupled Inductors. IEEE Transactions on Industrial Electronics, 2015, 62, 4481-4491.	5.2	37
31	Split-source inverter. , 2015, , .		21
32	Multi-harmonic small-signal modeling of digitally controlled dc-dc series resonant converters. , 2015, , .		3
33	A Novel Double Integrated Buck Offline Power Supply for Solid-State Lighting Applications. IEEE Transactions on Industry Applications, 2015, 51, 1268-1276.	3.3	22
34	Small-Signal Modeling of Uniformly Sampled Phase-Shift Modulators. IEEE Transactions on Power Electronics, 2015, 30, 5870-5880.	5.4	10
35	Efficient high step-up topology for renewable energy source interfacing. , 2015, , .		2
36	Small-signal modeling of combined phase shift and pulse width uniformly sampled modulators. , 2015, , .		1

3

GIORGIO SPIAZZI

#	Article	IF	CITATIONS
37	Dynamic effects of mismatched time constants in DC-DC converters with inductor DCR current sensing. , 2014, , .		3
38	Small-signal modeling of uniformly sampled phase shift modulators. , 2014, , .		2
39	Online efficiency optimization technique for digitally controlled resonant DC/DC converters. , 2014, , .		11
40	Study of the Asymmetrical Half-Bridge Flyback Converter as an Effective Line-Fed Solid-State Lamp Driver. IEEE Transactions on Industrial Electronics, 2014, 61, 6730-6738.	5.2	22
41	A High-Frequency Digitally Controlled LED Driver for Automotive Applications With Fast Dimming Capabilities. IEEE Transactions on Power Electronics, 2014, 29, 6648-6659.	5.4	36
42	A grid-connected multilevel converter for interfacing PV arrays and energy storage devices. , 2013, , .		2
43	Laboratory PV generator for MPPT dynamic response testing. , 2013, , .		5
44	A high-frequency digitally controlled LED driver for automotive applications with fast dimming capabilities. , 2013, , .		3
45	A novel double integrated buck offline power supply for solid state lighting applications. , 2013, , .		2
46	Modeling and Control Design of the Interleaved Double Dual Boost Converter. IEEE Transactions on Industrial Electronics, 2013, 60, 3283-3290.	5.2	137
47	A high efficiency and high power factor offline converter for solid state street lighting applications. , 2012, , .		4
48	Efficiency analysis of an isolated high voltage gain converter operating in resonant and non-resonant mode. , 2012, , .		3
49	Use of current controlled mutual inductor to limit recycling current in the AHB-Flyback converter. , 2012, , .		8
50	White light solid state lamp with luminance and color temperature control. , 2011, , .		11
51	Optimization of Shielded PCB Air-Core Toroids for High-Efficiency DC–DC Converters. IEEE Transactions on Power Electronics, 2011, 26, 1837-1846.	5.4	47
52	High Step-Up Ratio Flyback Converter With Active Clamp and Voltage Multiplier. IEEE Transactions on Power Electronics, 2011, 26, 3205-3214.	5.4	106
53	Line fed solid state lamp driver based on the asymmetrical half bridge flyback converter. , 2011, , .		4
54	Analysis and optimization of the AHB-flyback topology for solid state lighting applications. , 2011, , .		2

GIORGIO SPIAZZI

#	Article	IF	CITATIONS
55	Comparison of dc-dc converter topologies for future SLHC experiments. , 2009, , .		10
56	Electromagnetic Susceptibility Analysis on a Digital Pulse Width Modulator for SMPSs. IEEE Transactions on Electromagnetic Compatibility, 2009, 51, 1034-1043.	1.4	5
57	Design of an active load for electronic welding machines. , 2009, , .		3
58	Current sharing in three-phase LLC interleaved resonant converter. , 2009, , .		88
59	Low-Complexity MPPT Technique Exploiting the PV Module MPP Locus Characterization. IEEE Transactions on Industrial Electronics, 2009, 56, 1531-1538.	5.2	189
60	Non iterative design procedure of LCC-based electronic ballasts for fluorescent lamps including dimming operation. , 2009, , .		2
61	Effects of Parasitic Components in High-FrequencyResonant Drivers for SynchronousRectification MOSFETs. IEEE Transactions on Power Electronics, 2008, 23, 2082-2092.	5.4	23
62	Energy Management Fuzzy Logic Supervisory for Electric Vehicle Power Supplies System. IEEE Transactions on Power Electronics, 2008, 23, 107-115.	5.4	275
63	Reducing the EMI Susceptibility of a Kuijk Bandgap. IEEE Transactions on Electromagnetic Compatibility, 2008, 50, 876-886.	1.4	30
64	Small-Signal Analysis of Cold Cathode Fluorescent Lamp Ballasts. IEEE Transactions on Power Electronics, 2007, 22, 753-760.	5.4	16
65	Stability and performance evaluation of high-brightness light-emitting diodes under DC and pulsed bias conditions. Proceedings of SPIE, 2006, , .	0.8	20
66	P-71: Cold Cathode Fluorescent Lamp Power Supply Based on Piezoelectric Transformers. Digest of Technical Papers SID International Symposium, 2005, 36, 555.	0.1	0
67	Analysis of d.c. and a.c. anomalous latch-up effects in commercial CMOS integrated circuits. Microelectronics Reliability, 1991, 31, 249-254.	0.9	0