
Tai Kubo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5460918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature, 1986, 323, 411-416.	27.8	922
2	Primary structure of porcine cardiac muscarinic acetylcholine receptor deduced from the cDNA sequence. FEBS Letters, 1986, 209, 367-372.	2.8	335
3	Isolation and structural organization of the human preproenkephalin B gene. Nature, 1983, 306, 611-614.	27.8	271
4	Selective coupling with K+ currents of muscarinic acetylcholine receptor subtypes in NG108-15 cells. Nature, 1988, 335, 355-358.	27.8	218
5	Tissue distribution of mRNAs encoding muscarinic acetylcholine receptor subtypes. FEBS Letters, 1988, 239, 339-342.	2.8	217
6	Cloning, sequencing and expression of cDNA for a novel subunit of acetylcholine receptor from calf muscle. Nature, 1985, 315, 761-764.	27.8	173
7	Location of a region of the muscarinic acetylcholine receptor involved in selective effector coupling. FEBS Letters, 1988, 241, 119-125.	2.8	168
8	Molecular distinction between muscarinic acetylcholine receptor subtypes. Nature, 1987, 327, 623-625.	27.8	157
9	Cloning and sequence analysis of human genomic DNA encoding gamma subunit precursor of muscle acetylcholine receptor. FEBS Journal, 1985, 146, 15-22.	0.2	114
10	Primary structure of delta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. FEBS Journal, 1985, 149, 5-13.	0.2	108
11	cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA-protein fusions. Nucleic Acids Research, 2009, 37, e108-e108.	14.5	95
12	Primary structure of porcine muscarinic acetylcholine receptor III and antagonist binding studies. FEBS Letters, 1988, 235, 257-261.	2.8	90
13	Intracellular calcium release mediated by two muscarinic receptor subtypes. FEBS Letters, 1988, 240, 88-94.	2.8	80
14	Overexpression of and RNA Interference with the CCAAT Enhancer-Binding Protein on Long-Term Facilitation of Aplysia Sensory to Motor Synapses. Learning and Memory, 2001, 8, 220-226.	1.3	71
15	Molecular cloning and biological characterization of novel antimicrobial peptides, pilosulin 3 and pilosulin 4, from a species of the Australian ant genus Myrmecia. Archives of Biochemistry and Biophysics, 2004, 428, 170-178.	3.0	61
16	A new class of noninactivating K+ channels from aplysia capable of contributing to the resting potential and firing patterns of neurons. Neuron, 1994, 13, 1205-1213.	8.1	55
17	Selective detection and transport of fully matched DNA by DNA-loaded microtubule and kinesin motor protein. Biotechnology and Bioengineering, 2006, 95, 533-538.	3.3	51
18	Spontaneous muscle action potentials fail to develop without fetalâ€ŧype acetylcholine receptors. EMBO Reports, 2002, 3, 674-681.	4.5	48

Ται Κυβο

#	Article	IF	CITATIONS
19	Malachite green-conjugated microtubules as mobile bioprobes selective for malachite green aptamers with capturing/releasing ability. Biotechnology and Bioengineering, 2006, 94, 473-480.	3.3	44
20	Different sensitivities to agonist of muscarinic acetylcholine receptor subtypes. FEBS Letters, 1988, 240, 95-100.	2.8	41
21	Real Time Ligand-Induced Motion Mappings of AChBP and nAChR Using X-ray Single Molecule Tracking. Scientific Reports, 2014, 4, 6384.	3.3	39
22	Directed evolution of a three-finger neurotoxin by using cDNA display yields antagonists as well as agonists of interleukin-6 receptor signaling. Molecular Brain, 2011, 4, 2.	2.6	35
23	Characterization of voltage-dependent calcium channel blocking peptides from the venom of the tarantula Grammostola rosea. Toxicon, 2011, 58, 265-276.	1.6	33
24	Pilosulin 5, a novel histamine-releasing peptide of the Australian ant, Myrmecia pilosula (Jack Jumper) Tj ETQq0 0	0 rǥ₿T /Oʻ	verlock 10 Tf
25	Identification of crotasin, a crotamine-related gene of Crotalus durissus terrificus. Toxicon, 2004, 43, 751-759.	1.6	31
26	Structure and chromosomal localization of the gene for crotamine, a toxin from the South American rattlesnake, Crotalus durissus terrificus. Toxicon, 2003, 42, 747-752.	1.6	29
27	Transcriptome analysis and identification of regulators for long-term plasticity in <i>Aplysia kurodai</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18602-18607.	7.1	25
28	Molecular Cloning and Sequence Analysis of the cDNAs Encoding Toxin-Like Peptides from the Venom Glands of Tarantula <i>Grammostola rosea</i> . International Journal of Peptides, 2012, 2012, 1-10.	0.7	25
29	Functional characterization of Kunitz-type protease inhibitor Pr-mulgins identified from New Guinean Pseudechis australis. Toxicon, 2012, 59, 74-80.	1.6	23
30	Diffracted X-ray Blinking Tracks Single Protein Motions. Scientific Reports, 2018, 8, 17090.	3.3	23
31	Enhanced activation of the transient receptor potential channel TRPA1 by ajoene, an allicin derivative. Neuroscience Research, 2010, 66, 99-105.	1.9	21
32	Genetic engineering of a Ca2+dependent chemical switch into the linear biomotor kinesin. FEBS Letters, 2006, 580, 3589-3594.	2.8	18
33	X-ray-based living-cell motion analysis of individual serotonin receptors. Biochemical and Biophysical Research Communications, 2020, 529, 306-313.	2.1	17
34	Cloning and functional characterization of squid voltage-dependent Ca2+ channel β subunits: involvement of N-terminal sequences in differential modulation of the current. Neuroscience Research, 2003, 46, 105-117.	1.9	13
35	Agonist and Antagonist-Diverted Twisting Motions of a Single TRPV1 Channel. Journal of Physical Chemistry B, 2020, 124, 11617-11624.	2.6	13
36	Versatile C-Terminal Specific Biotinylation of Proteins Using Both a Puromycin-Linker and a Cell-Free Translation System for Studying High-Throughput Protein–Molecule Interactions. Analytical Chemistry, 2014, 86, 8535-8540.	6.5	10

Таі Киво

#	Article	IF	CITATIONS
37	Directed evolution of three-finger toxin to produce serine protease inhibitors. Journal of Receptor and Signal Transduction Research, 2014, 34, 154-161.	2.5	10
38	Up- and Down-Modulation of a Cloned Aplysia K ⁺ Channel (AKv1.1a) by the Activators of Protein Kinase C. Zoological Science, 1995, 12, 35-44.	0.7	9
39	A High Performance Platform Based on cDNA Display for Efficient Synthesis of Protein Fusions and Accelerated Directed Evolution. ACS Combinatorial Science, 2016, 18, 117-129.	3.8	9
40	Living-Cell Diffracted X-ray Tracking Analysis Confirmed Internal Salt Bridge Is Critical for Ligand-Induced Twisting Motion of Serotonin Receptors. International Journal of Molecular Sciences, 2021, 22, 5285.	4.1	9
41	Expression cloning of <i>Xenopus</i> zygote arrest 2 (Xzar2) as a novel epidermalizationâ€promoting factor in early embryos of <i>Xenopus laevis</i> . Genes To Cells, 2009, 14, 583-595.	1.2	6
42	Regional divergence of phospholipase A2-like protein cDNAs between New Guinean and Australian Pseudechis australis. Toxicon, 2010, 56, 637-639.	1.6	6
43	Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase. Analytical Biochemistry, 2011, 419, 33-39.	2.4	5
44	Functional identification of a cloned squid presynaptic voltage-dependent calcium channel. NeuroReport, 2002, 13, 2389-2393.	1.2	4
45	36. Random Peptide Library Based on a Spider Neurotoxin, and Utilization of the Library in in vitro Evolution Directed to GPCR Ligands. Toxicon, 2012, 60, 113.	1.6	3
46	Random Peptide Library for Ligand and Drug Discovery. Toxinology, 2017, , 207-230.	0.2	3
47	Cumulative inactivation and the pore domain in the Kv1 channels. Pflugers Archiv European Journal of Physiology, 2002, 443, 720-730.	2.8	2
48	Modulation of a Feeding Neural Circuit by Microinjection of K+Channel Expression Genes into a Single Identified Neuron in Aplysia kurodai. Zoological Science, 2004, 21, 369-373.	0.7	2
49	Experimental analysis of the basic idea on the transcription-based diagnostic automata controlled by programmed molecules. Natural Computing, 2008, 7, 403-421.	3.0	2
50	Design of Bio-Inspired Multi-Stage Regulations for Diagnostic Molecular Automata. Journal of Computational and Theoretical Nanoscience, 2010, 7, 831-839.	0.4	2
51	Pr-SNTX, a short-chain three-finger toxin from Papuan pigmy mulga snake, is an antagonist of muscle-type nicotinic acetylcholine receptor (α2l²l ε). Bioscience, Biotechnology and Biochemistry, 2016, 80, 158-161.	1.3	2
52	Random Peptide Library for Ligand and Drug Discovery. , 2016, , 1-24.		2
53	Molecular Basis of the Muscarinic Acetylcholine Receptor. Annals of the New York Academy of Sciences, 1993, 707, 210-224.	3.8	1
54	Realtime Single Molecular Motion Analysis of Nicotinic Acetylcholine Receptor Alpha 7 by Diffracted X-Ray Tracking Method. Biophysical Journal, 2016, 110, 222a.	0.5	1

Таі Киво

#	Article	IF	CITATIONS
55	Modulated Dynamics of Pam-α7 nAChR From X-Ray Single Molecular Observations. Biophysical Journal, 2017, 112, 327a.	0.5	1
56	Regulation Effects by Programmed Molecules for Transcription-Based Diagnostic Automata towards Therapeutic Use. Proceedings in Information and Communications Technology, 2009, , 81-89.	0.2	1
57	Experimental Validation of the Transcription-Based Diagnostic Automata with Quantitative Control by Programmed Molecules. , 2008, , 89-98.		1
58	Muscarinic acetylcholine receptor subtypes: molecular distinction and selective effector coupling. European Journal of Pharmacology, 1990, 183, 105.	3.5	0
59	Effect of bio-inspired multi-stage regulations for diagnostic molecular automata. , 2008, , .		Ο
60	Ligand-Induced Internal Molecular Dynamics of Nicotinic Acetylcholine Receptor Analysis by Diffracted X-Ray Tracking. Biophysical Journal, 2011, 100, 273a.	0.5	0
61	High-Speed 2-Dimentional Observation of Stepwise Motions in Single nAChR and AChBP using Diffracted X-Ray Tracking (DXT). Biophysical Journal, 2012, 102, 116a.	0.5	0
62	Development of the Periss Method to Generate GPCR Ligands/Binders from a Random Peptide Library with a Spider Neurotoxin Scaffold. Biophysical Journal, 2012, 102, 657a.	0.5	0
63	Three-Dimensional Micro Seconds X-Ray Single Molecule Tracking of Nicotinic Acetylcholine Receptor with Picometer Accuracy. Biophysical Journal, 2013, 104, 543a.	0.5	0
64	Peptidome and Transcriptome Analysis of the Toxin-Like Peptides in the Venom Glands of Tarantula Grammostola rosea. , 2016, , 251-270.		0
65	3D Motion Maps of TRPV1 Cation Channel Depicted by Diffracted X-ray Tracking Method. Biophysical Journal, 2017, 112, 201a.	0.5	Ο
66	Rotational Brownian Motion of TRPV1 Channel Observed by Synchrotron Diffracted X-Ray Tracking and Laboratory X-Ray Blinking Analysis. Biophysical Journal, 2018, 114, 481a.	0.5	0
67	1P322 A Sensitive Biosensor for Specific Ligands of 5-Hydroxytriptamine type-3 receptor(Bioengineering,) Tj I S104.	ETQq1 1 0.78 0.1	84314 rgBT 0 0
68	Peptidome and Transcriptome Analysis of the Toxin-Like Peptides in the Venom Glands of Tarantula Grammostola rosea. , 2015, , 1-16.		0
69	Toward understanding of internal motion measurement with quantum probe and cryo-EM. Japanese Journal of Pesticide Science, 2019, 44, 210-215.	0.0	0
70	cDNA Display of Disulfide-Containing Peptide Library and In Vitro Evolution. Methods in Molecular Biology, 2020, 2070, 57-77.	0.9	0