Paul J Kushner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5460751/publications.pdf

Version: 2024-02-01

66315 38368 12,535 97 42 95 citations h-index g-index papers 115 115 115 10785 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Community Earth System Model: A Framework for Collaborative Research. Bulletin of the American Meteorological Society, 2013, 94, 1339-1360.	1.7	1,848
2	The Community Earth System Model (CESM) Large Ensemble Project: A Community Resource for Studying Climate Change in the Presence of Internal Climate Variability. Bulletin of the American Meteorological Society, 2015, 96, 1333-1349.	1.7	1,723
3	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	1.2	1,431
4	The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001916.	1.3	935
5	Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 2011, 4, 741-749.	5.4	781
6	The New GFDL Global Atmosphere and Land Model AM2–LM2: Evaluation with Prescribed SST Simulations. Journal of Climate, 2004, 17, 4641-4673.	1.2	756
7	Southern Hemisphere Atmospheric Circulation Response to Global Warming. Journal of Climate, 2001, 14, 2238-2249.	1.2	366
8	Stratosphere–Troposphere Coupling and Links with Eurasian Land Surface Variability. Journal of Climate, 2007, 20, 5335-5343.	1.2	280
9	Tropospheric response to stratospheric perturbations in a relatively simple general circulation model. Geophysical Research Letters, 2002, 29, 18-1.	1.5	274
10	Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models. Nature Geoscience, 2018, 11, 155-163.	5.4	265
11	Quantifying climate feedbacks in polar regions. Nature Communications, 2018, 9, 1919.	5.8	254
12	Stratosphere–Troposphere Coupling in a Relatively Simple AGCM: The Role of Eddies. Journal of Climate, 2004, 17, 629-639.	1.2	171
13	Characterization of Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010. Journal of Climate, 2015, 28, 8037-8051.	1.2	151
14	A Mechanism and Simple Dynamical Model of the North Atlantic Oscillation and Annular Modes. Journals of the Atmospheric Sciences, 2004, 61, 264-280.	0.6	143
15	Multimodel climate and variability of the stratosphere. Journal of Geophysical Research, 2011, 116, .	3.3	139
16	Snow–atmosphere coupling in the Northern Hemisphere. Nature Climate Change, 2018, 8, 954-963.	8.1	139
17	A robust empirical seasonal prediction of winter NAO and surface climate. Scientific Reports, 2017, 7, 279.	1.6	120
18	Review of simulations of climate variability and change with the GFDL R30 coupled climate model. Climate Dynamics, 2002, 19, 555-574.	1.7	119

#	Article	IF	CITATIONS
19	The Role of Linear Interference in the Annular Mode Response to Tropical SST Forcing. Journal of Climate, 2011, 24, 778-794.	1.2	115
20	The Dynamical Response to Snow Cover Perturbations in a Large Ensemble of Atmospheric GCM Integrations. Journal of Climate, 2009, 22, 1208-1222.	1.2	113
21	Canadian snow and sea ice: historical trends and projections. Cryosphere, 2018, 12, 1157-1176.	1.5	95
22	Climateâ€related variations in mixing dynamics in an Alaskan arctic lake. Limnology and Oceanography, 2009, 54, 2401-2417.	1.6	92
23	Snow cover response to temperature in observational and climate model ensembles. Geophysical Research Letters, 2017, 44, 919-926.	1.5	90
24	Isolating the Atmospheric Circulation Response to Arctic Sea Ice Loss in the Coupled Climate System. Journal of Climate, 2017, 30, 2163-2185.	1.2	87
25	The Role of Linear Interference in the Annular Mode Response to Extratropical Surface Forcing. Journal of Climate, 2010, 23, 6036-6050.	1.2	85
26	The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4. Journal of Climate, 2016, 29, 401-417.	1.2	84
27	Investigating the ability of general circulation models to capture the effects of Eurasian snow cover on winter climate. Journal of Geophysical Research, 2008, 113, .	3.3	80
28	Impact of the stratosphere on tropospheric climate change. Geophysical Research Letters, 2008, 35, .	1.5	80
29	Variability and change in the Canadian cryosphere. Climatic Change, 2012, 115, 59-88.	1.7	79
30	Dynamics of Barotropic Storm Tracks. Journals of the Atmospheric Sciences, 1997, 54, 791-810.	0.6	77
31	Summertime climate response to mountain pine beetle disturbance in British Columbia. Nature Geoscience, 2013, 6, 65-70.	5.4	77
32	Linear interference and the initiation of extratropical stratosphereâ€troposphere interactions. Journal of Geophysical Research, 2012, 117, .	3.3	76
33	Power-Law and Long-Memory Characteristics of the Atmospheric General Circulation. Journal of Climate, 2009, 22, 2890-2904.	1.2	71
34	Constrained work output of the moist atmospheric heat engine in a warming climate. Science, 2015, 347, 540-543.	6.0	66
35	Regional variability of a projected sea iceâ€free Arctic during the summer months. Geophysical Research Letters, 2016, 43, 256-263.	1.5	66
36	Remarkable separability of circulation response to Arctic sea ice loss and greenhouse gas forcing. Geophysical Research Letters, 2017, 44, 7955-7964.	1.5	63

#	Article	IF	Citations
37	The Role of Linear Interference in Northern Annular Mode Variability Associated with Eurasian Snow Cover Extent. Journal of Climate, 2011, 24, 6185-6202.	1.2	58
38	Does External Forcing Interfere with the AMOC's Influence on North Atlantic Sea Surface Temperature?. Journal of Climate, 2015, 28, 6309-6323.	1.2	57
39	Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback. Npj Climate and Atmospheric Science, 2020, 3, .	2.6	49
40	Using models and satellite observations to evaluate the strength of snow albedo feedback. Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	47
41	The Coupled Stratosphere–Troposphere Response to Impulsive Forcing from the Troposphere. Journals of the Atmospheric Sciences, 2005, 62, 3337-3352.	0.6	45
42	Circulation responses to snow albedo feedback in climate change. Geophysical Research Letters, 2009, 36, .	1.5	45
43	Stratospheric control of the extratropical circulation response to surface forcing. Geophysical Research Letters, 2007, 34, .	1.5	41
44	Interpreting observed northern hemisphere snow trends with large ensembles of climate simulations. Climate Dynamics, 2014, 43, 345-359.	1.7	39
45	A test, using atmospheric data, of a method for estimating oceanic eddy diffusivity. Geophysical Research Letters, 1998, 25, 4213-4216.	1.5	36
46	The Global Stationary Wave Response to Climate Change in a Coupled GCM. Journal of Climate, 2004, 17, 540-556.	1.2	36
47	Impact of sudden Arctic seaâ€ice loss on stratospheric polar ozone recovery. Geophysical Research Letters, 2009, 36, .	1.5	35
48	The Structure and Composition of the Annular Modes in an Aquaplanet General Circulation Model. Journals of the Atmospheric Sciences, 2002, 59, 3399-3414.	0.6	33
49	Modeling and understanding persistence of climate variability. Journal of Geophysical Research, 2012, 117, .	3.3	29
50	Stratosphere–Troposphere Coupling in a Relatively Simple AGCM: Impact of the Seasonal Cycle. Journal of Climate, 2006, 19, 5721-5727.	1.2	28
51	Agreement in late twentieth century Southern Hemisphere stratospheric temperature trends in observations and CCMValâ€2, CMIP3, and CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 605-613.	1.2	27
52	Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system. Cryosphere, 2018, 12, 1137-1156.	1.5	27
53	Reassessing Sea Ice Drift and Its Relationship to Longâ€Term Arctic Sea Ice Loss in Coupled Climate Models. Journal of Geophysical Research: Oceans, 2018, 123, 4338-4359.	1.0	26
54	No Impact of Anthropogenic Aerosols on Early 21st Century Global Temperature Trends in a Large Initialâ€Condition Ensemble. Geophysical Research Letters, 2018, 45, 9245-9252.	1.5	25

#	Article	IF	CITATIONS
55	Zonal Asymmetries, Teleconnections, and Annular Patterns in a GCM. Journals of the Atmospheric Sciences, 2005, 62, 207-219.	0.6	24
56	A Very Large, Spontaneous Stratospheric Sudden Warming in a Simple AGCM: A Prototype for the Southern Hemisphere Warming of 2002?. Journals of the Atmospheric Sciences, 2005, 62, 890-897.	0.6	23
57	On the origins of temporal powerâ€law behavior in the global atmospheric circulation. Geophysical Research Letters, 2009, 36, .	1.5	22
58	Wave-activity conservation laws and stability theorems for semi-geostrophic dynamics. Part 2. Pseudoenergy-based theory. Journal of Fluid Mechanics, 1995, 290, 105-129.	1.4	20
59	Coupled Kelvin-Wave and Mirage-Wave Instabilities in Semigeostrophic Dynamics. Journal of Physical Oceanography, 1998, 28, 513-518.	0.7	20
60	Wave-activity conservation laws and stability theorems for semi-geostrophic dynamics. Part 1. Pseudomomentum-based theory. Journal of Fluid Mechanics, 1995, 290, 67-104.	1.4	19
61	Isentropic constraints by midlatitude surface warming on the Arctic midtroposphere. Geophysical Research Letters, 2013, 40, 606-611.	1.5	19
62	The Role of Extratropical Ocean Warming in the Coupled Climate Response to Arctic Sea Ice Loss. Journal of Climate, 2018, 31, 9193-9206.	1.2	18
63	On the Relative Robustness of the Climate Response to Highâ€Latitude and Lowâ€Latitude Warming. Geophysical Research Letters, 2018, 45, 6232-6241.	1.5	17
64	Anthropogenic Aerosols Dominate Forced Multidecadal Sahel Precipitation Change through Distinct Atmospheric and Oceanic Drivers. Journal of Climate, 2020, 33, 10187-10204.	1.2	16
65	Putting computation on a par with experiments and theory in the undergraduate physics curriculum. American Journal of Physics, 2011, 79, 919-924.	0.3	14
66	Linear interference and the Northern Annular Mode response to tropical SST forcing: Sensitivity to model configuration. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4267-4279.	1.2	14
67	Diagnosing the stratosphere-troposphere stationary wave response to climate change in a general circulation model. Journal of Geophysical Research, 2011, 116, .	3.3	13
68	Midlatitude Moisture Contribution to Recent Arctic Tropospheric Summertime Variability*. Journal of Climate, 2014, 27, 5693-5707.	1.2	13
69	Constraining Reanalysis Snowfall Over the Arctic Ocean Using CloudSat Observations. Geophysical Research Letters, 2020, 47, e2019GL086426.	1.5	13
70	Decomposition of Atmospheric Disturbances into Standing and Traveling Components, with Application to Northern Hemisphere Planetary Waves and Stratosphere–Troposphere Coupling. Journals of the Atmospheric Sciences, 2015, 72, 787-802.	0.6	12
71	Assessment of the aerodynamic performance of unconventional building shapes using 3D steady RANS with SST k-ï‰ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 225, 104988.	1.7	12
72	Resolving the Regional Signature of the Annular Modes. Journal of Climate, 2007, 20, 2840-2852.	1.2	11

#	Article	IF	CITATIONS
73	Discriminating robust and nonâ \in robust atmospheric circulation responses to global warming. Journal of Geophysical Research, 2007, 112 , .	3.3	11
74	A method to diagnose sources of annular mode time scales. Journal of Geophysical Research, 2011, 116, .	3.3	11
75	Southern Hemisphere Stationary Wave Response to Changes of Ozone and Greenhouse Gases. Journal of Climate, 2013, 26, 10205-10217.	1.2	11
76	Opposite Responses of the Dry and Moist Eddy Heat Transport Into the Arctic in the PAMIP Experiments. Geophysical Research Letters, 2021, 48, e2020GL089990.	1.5	11
77	Interannual Variability of the Global Meridional Overturning Circulation Dominated by Pacific Variability. Journal of Physical Oceanography, 2020, 50, 559-574.	0.7	10
78	Potential Vorticity Thickness Fluxes and Wave–Mean Flow Interaction. Journals of the Atmospheric Sciences, 1999, 56, 948-958.	0.6	9
79	Separating the Influences of Low-Latitude Warming and Sea Ice Loss on Northern Hemisphere Climate Change. Journal of Climate, 2022, 35, 2327-2349.	1.2	9
80	The Role of Standing Waves in Driving Persistent Anomalies of Upward Wave Activity Flux. Journal of Climate, 2015, 28, 9941-9954.	1.2	8
81	Influence of Midlatitude Surface Thermal Anomalies on the Polar Midtroposphere in an Idealized Moist Model. Journals of the Atmospheric Sciences, 2018, 75, 1089-1104.	0.6	8
82	Annular modes of the troposphere and stratosphere. Geophysical Monograph Series, 2010, , 59-91.	0.1	8
83	EON-ROSE and the Canadian Cordillera Array – Building Bridges to Span Earth System Science in Canada. Geoscience Canada, 2018, 45, 97-109.	0.3	8
84	Estimating the Anthropogenic Sea Surface Temperature Response Using Pattern Scaling. Journal of Climate, 2015, 28, 3751-3763.	1.2	7
85	Evolving Sahel Rainfall Response to Anthropogenic Aerosols Driven by Shifting Regional Oceanic and Emission Influences. Journal of Climate, 2022, , 1-27.	1.2	7
86	Stability of stiffened cruciform steel columns under shear and compression by the complex finite strip method. Thin-Walled Structures, 2019, 136, 221-234.	2.7	6
87	A generalized Charney-Stern theorem for semi-geostrophic dynamics. Tellus, Series A: Dynamic Meteorology and Oceanography, 1995, 47, 541-547.	0.8	5
88	Interpreting Stationary Wave Nonlinearity in Barotropic Dynamics. Journals of the Atmospheric Sciences, 2010, 67, 2240-2250.	0.6	5
89	Estimating the Continental Response to Global Warming Using Pattern-Scaled Sea Surface Temperatures and Sea Ice. Journal of Climate, 2016, 29, 9125-9139.	1.2	4
90	Limited Influence of Localized Tropical Seaâ€Surface Temperatures on Moisture Transport into the Arctic. Geophysical Research Letters, 2021, 48, e2020GL091540.	1.5	4

#	Article	IF	CITATIONS
91	A generalized Charney—Stern theorem for semi-geostrophic dynamics. Tellus, Series A: Dynamic Meteorology and Oceanography, 1995, 47, 541-547.	0.8	3
92	Comment on "On the presence of annular variability in an aquaplanet model―by Masahiro Watanabe. Geophysical Research Letters, 2007, 34, .	1.5	3
93	Why are Temperature and Upward Wave Activity Flux Positively Skewed in the Polar Stratosphere?. Journal of Climate, 2018, 31, 115-130.	1.2	3
94	Towards a Computational Workflow for Studying the Effects of Climate Change on Wind Loads on High-Rise Buildings in Urban Areas. Atmosphere - Ocean, 2022, 60, 124-140.	0.6	2
95	Using â€~heat tagging' to understand the remote influence of atmospheric diabatic heating through long-range transport. Journals of the Atmospheric Sciences, 2021, , .	0.6	1
96	Cold Temperature Limits to Biodiesel Use under Present and Future Climates in North America. Environmental Science & Environme	4.6	1
97	North American Earth Science Megaproject Continuum, Part 3: New Canadian EONâ€ROSE Program. Acta Geologica Sinica, 2019, 93, 12-13.	0.8	0