Sachchida N Tripathi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5459819/sachchida-n-tripathi-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

105 papers

4,413 citations

36 h-index

64 g-index

109 ext. papers

5,067 ext. citations

5.9 avg, IF

5.61 L-index

#	Paper	IF	Citations
105	Current status of source apportionment of ambient aerosols in India. <i>Atmospheric Environment</i> , 2022 , 274, 118987	5.3	2
104	Effect of Biomass Burning on PM 2.5 Composition and Secondary Aerosol Formation During Post-Monsoon and Winter Haze Episodes in Delhi. <i>Journal of Geophysical Research D: Atmospheres</i> , 2022 , 127,	4.4	4
103	Few-shot calibration of low-cost air pollution (PM2.5) sensors using meta-learning 2022 , 1-1		2
102	Domain Adaptation-Based Deep Calibration of Low-Cost PMISensors. <i>IEEE Sensors Journal</i> , 2021 , 1-1	4	3
101	Aerosol Loading and Radiation Budget Perturbations in Densely Populated and Highly Polluted Indo-Gangetic Plain by COVID-19: Influences on Cloud Properties and Air Temperature <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL093796	4.9	3
100	Detection and Quantification of Enteric Pathogens in Aerosols Near Open Wastewater Canals in Cities with Poor Sanitation. <i>Environmental Science & Environmental Science & Env</i>	10.3	7
99	Air Pollution in New Delhi during Late Winter: An Overview of a Group of Campaign Studies Focusing on Composition and Sources. <i>Atmosphere</i> , 2021 , 12, 1432	2.7	2
98	Long-term trends in air quality in major cities in the UK and India: a view from space. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6275-6296	6.8	15
97	Variations in Black Carbon concentration and sources during COVID-19 lockdown in Delhi. <i>Chemosphere</i> , 2021 , 270, 129435	8.4	14
96	Real-time characterization and source apportionment of fine particulate matter in the Delhi megacity area during late winter. <i>Science of the Total Environment</i> , 2021 , 770, 145324	10.2	14
95	Why airborne transmission hasn R been conclusive in case of COVID-19? An atmospheric science perspective. <i>Science of the Total Environment</i> , 2021 , 773, 145525	10.2	20
94	Effect of charge on aerosol microphysics of particles emitted from a hot wire generator: Theory and experiments. <i>Aerosol Science and Technology</i> , 2021 , 55, 1084-1098	3.4	0
93	Proliferation of Lung Epithelial Cells Is Regulated by the Mechanisms of Autophagy Upon Exposure of Soots. <i>Frontiers in Cell and Developmental Biology</i> , 2021 , 9, 662597	5.7	1
92	Robust statistical calibration and characterization of portable low-cost air quality monitoring sensors to quantify real-time O₃ and NO₂ concentrations in diverse environments. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 37-52	4	11
91	The Indian COSMOS Network (ICON): Validating L-Band Remote Sensing and Modelled Soil Moisture Data Products. <i>Remote Sensing</i> , 2021 , 13, 537	5	6
90	Variation in chemical composition and sources of PM during the COVID-19 lockdown in Delhi. <i>Environment International</i> , 2021 , 153, 106541	12.9	19
89	An application of probability density function for the analysis of PM2.5 concentration during the COVID-19 lockdown period. <i>Science of the Total Environment</i> , 2021 , 782, 146681	10.2	3

88	Interaction of cesium bound fission product compounds (CsI and CsOH) with abundant inorganic compounds of atmosphere: Effect on hygroscopic growth properties. <i>Journal of Hazardous Materials</i> , 2021 , 418, 126356	12.8	2
87	Diurnal variability in the spectral characteristics and sources of water-soluble brown carbon aerosols over Delhi. <i>Science of the Total Environment</i> , 2021 , 794, 148589	10.2	6
86	Evolution of size and composition of fine particulate matter in the Delhi megacity during later winter. <i>Atmospheric Environment</i> , 2021 , 267, 118752	5.3	1
85	Large global variations in measured airborne metal concentrations driven by anthropogenic sources. <i>Scientific Reports</i> , 2020 , 10, 21817	4.9	4
84	Real-Time Measurements of PM2.5 Oxidative Potential Using a Dithiothreitol Assay in Delhi, India. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 504-510	11	20
83	Validation of Low-Cost Sensors in Measuring Real-Time PM Concentrations at Two Sites in Delhi National Capital Region. <i>Sensors</i> , 2020 , 20,	3.8	8
82	Real-time measurement and source apportionment of elements in Delhiß atmosphere. <i>Science of the Total Environment</i> , 2020 , 742, 140332	10.2	40
81	Extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli presence in urban aquatic environments in Kanpur, India. <i>Journal of Water and Health</i> , 2020 , 18, 849-854	2.2	3
80	Source characterization of volatile organic compounds measured by proton-transfer-reaction time-of-flight mass spectrometers in Delhi, India. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9753-977	6 .8	18
79	Particle formation from vapors emitted from glowing wires: Theory and experiments. <i>Aerosol Science and Technology</i> , 2020 , 54, 243-261	3.4	5
78	Wintertime hygroscopic growth factors (HGFs) of accumulation mode particles and their linkage to chemical composition in a heavily polluted urban atmosphere of Kanpur at the Centre of IGP, India: Impact of ambient relative humidity. <i>Science of the Total Environment</i> , 2020 , 704, 135363	10.2	6
77	Chemical characterization of PM and source apportionment of organic aerosol in New Delhi, India. <i>Science of the Total Environment</i> , 2020 , 745, 140924	10.2	34
76	Climatological trends in satellite-derived aerosol optical depth over North India and its relationship with crop residue burning: Rural-urban contrast. <i>Science of the Total Environment</i> , 2020 , 748, 140963	10.2	17
75	Spatial and temporal variability in energy and water vapour fluxes observed at seven sites on the Indian subcontinent during 2017. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2020 , 146, 2853-	-2866	6
74	Interaction of convective organization with monsoon precipitation, atmosphere, surface and sea: The 2016 INCOMPASS field campaign in India. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2020 , 146, 2828-2852	6.4	21
73	Gaussian process regression model for dynamically calibrating and surveilling a wireless low-cost particulate matter sensor network in Delhi. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 5161-5181	4	16
72	Examination of monitoring approaches for ambient air pollution: A case study for India. <i>Atmospheric Environment</i> , 2019 , 216, 116940	5.3	29
71	Evolution of Aerosol Size and Composition in the Indo-Gangetic Plain: Size-Resolved Analysis of High-Resolution Aerosol Mass Spectra. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 823-832	3.2	6

70	SATVAM: Toward an IoT Cyber-Infrastructure for Low-Cost Urban Air Quality Monitoring 2019,		1
69	Biases in Model-Simulated Surface Energy Fluxes During the Indian Monsoon Onset Period. Boundary-Layer Meteorology, 2019 , 170, 323-348	3.4	9
68	Intensive allochthonous inputs along the Ganges River and their effect on microbial community composition and dynamics. <i>Environmental Microbiology</i> , 2019 , 21, 182-196	5.2	18
67	Access to Household Water Quality Information Leads to Safer Water: A Cluster Randomized Controlled Trial in india. <i>Environmental Science & Environmental Science & Environme</i>	10.3	11
66	Vertical Structure and Radiative Forcing of Monsoon Clouds Over Kanpur During the 2016 INCOMPASS Field Campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 2152-2174	4.4	6
65	Realtime chemical characterization of post monsoon organic aerosols in a polluted urban city: Sources, composition, and comparison with other seasons. <i>Environmental Pollution</i> , 2018 , 232, 310-321	9.3	16
64	Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 4823-4846	4	143
63	Absorbing Refractive Index and Direct Radiative Forcing of Atmospheric Brown Carbon over Gangetic Plain. <i>ACS Earth and Space Chemistry</i> , 2018 , 2, 31-37	3.2	22
62	Global Sources of Fine Particulate Matter: Interpretation of PM Chemical Composition Observed by SPARTAN using a Global Chemical Transport Model. <i>Environmental Science & Camp; Technology</i> , 2018 , 52, 11670-11681	10.3	40
61	Aerosol-induced intensification of cooling effect of clouds during Indian summer monsoon. <i>Nature Communications</i> , 2018 , 9, 3754	17.4	39
60	Aerosol and Urban Land Use Effect on Rainfall Around Cities in Indo-Gangetic Basin From Observations and Cloud Resolving Model Simulations. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 3645-3667	4.4	19
59	Laboratory observations of temperature and humidity dependencies of nucleation and growth rates of sub-3 nm particles. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 1919-1929	4.4	20
58	Understanding Diurnality and Inter-Seasonality of a Sub-tropical Urban Heat Island. <i>Boundary-Layer Meteorology</i> , 2017 , 163, 287-309	3.4	28
57	Investigation of the aerosolfloudfainfall association over the Indian summer monsoon region. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5185-5204	6.8	48
56	Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur. <i>Scientific Reports</i> , 2016 , 6, 37735	4.9	44
55	Characterization of organic residues of size-resolved fog droplets and their atmospheric implications. <i>Journal of Geophysical Research D: Atmospheres</i> , 2016 , 121, 4317-4332	4.4	23
54	Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period. Journal of Geophysical Research D: Atmospheres, 2016 , 121, 7936-7957	4.4	36
53	Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity. <i>Space Science Reviews</i> , 2016 , 203, 299-345	7.5	61

(2012-2016)

52	Quantitative assessment of AOD from 17 CMIP5 models based on satellite-derived AOD over India. <i>Annales Geophysicae</i> , 2016 , 34, 657-671	2	10
51	A photochemical model of the dust-loaded ionosphere of Mars. <i>Journal of Geophysical Research E: Planets</i> , 2016 , 121, 2335-2348	4.1	9
50	Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation, composition, and evolution. <i>Science of the Total Environment</i> , 2016 , 573, 690-698	10.2	21
49	Highly time resolved chemical characterization of submicron organic aerosols at a polluted urban location. <i>Environmental Sciences: Processes and Impacts</i> , 2016 , 18, 1285-1296	4.3	15
48	SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications. <i>Atmospheric Measurement Techniques</i> , 2015 , 8, 505-52	4	56
47	Contribution of Brown Carbon to Direct Radiative Forcing over the Indo-Gangetic Plain. <i>Environmental Science & Environmental </i>	10.3	53
46	CCN closure study: Effects of aerosol chemical composition and mixing state. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 766-783	4.4	54
45	Aerosol-cloud associations over Gangetic Basin during a typical monsoon depression event using WRF-Chem simulation. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 10,974-10,995	4.4	21
44	Real-time measurements of ambient aerosols in a polluted Indian city: Sources, characteristics, and processing of organic aerosols during foggy and nonfoggy periods. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 9006-9019	4.4	53
43	Atmospheric ions and new particle formation events at a tropical location, Pune, India. <i>Quarterly Journal of the Royal Meteorological Society</i> , 2015 , 141, 3140-3156	6.4	17
42	Remote Sensing of Atmospheric Aerosols 2014 , 119-151		1
41	Inter-seasonal variability in size-resolved CCN properties at Kanpur, India. <i>Atmospheric Environment</i> , 2014 , 85, 161-168	5.3	27
40	Latitudinal variation of aerosol properties from Indo-Gangetic Plain to central Himalayan foothills during TIGERZ campaign. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 4750-4769	4.4	43
39	Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in Northern India. <i>Journal of Atmospheric Chemistry</i> , 2014 , 71, 283-301	3.2	95
38	Observations of new particle formation at two distinct Indian subcontinental urban locations. <i>Atmospheric Environment</i> , 2014 , 96, 370-379	5.3	45
37	An overview of the physico-chemical characteristics of dust at Kanpur in the central Indo-Gangetic basin. <i>Atmospheric Environment</i> , 2014 , 97, 386-396	5.3	25
36	Harmonisation of nanoparticle concentration measurements using GRIMM and TSI scanning mobility particle sizers. <i>Journal of Nanoparticle Research</i> , 2012 , 14, 1	2.3	25
35	Temporal trends in atmospheric PMIPMI elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. <i>Environmental Science & Technology</i> , 2012 , 46, 686-95	10.3	154

34	Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions. <i>Environmental Science & Environmental Environm</i>	10.3	27
33	Fog- and cloud-induced aerosol modification observed by the Aerosol Robotic Network (AERONET). Journal of Geophysical Research, 2012, 117, n/a-n/a		70
32	Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products. <i>Journal of Atmospheric and Oceanic Technology</i> , 2012 , 29, 1285-1294	2	59
31	First Surface Measurement of Cloud Condensation Nuclei over Kanpur, IGP: Role of Long Range Transport. <i>Aerosol Science and Technology</i> , 2012 , 46, 973-982	3.4	22
30	Aerosol properties over the Indo-Gangetic Plain: A mesoscale perspective from the TIGERZ experiment. <i>Journal of Geophysical Research</i> , 2011 , 116,		122
29	Observation-based 3-D view of aerosol radiative properties over Indian Continental Tropical Convergence Zone: implications to regional climate. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2011 , 63, 971-989	3.3	34
28	Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact. <i>Annales Geophysicae</i> , 2011 , 29, 789-804	2	105
27	On radiative forcing of sulphate aerosol produced from ion-promoted nucleation mechanisms in an atmospheric global model. <i>Meteorology and Atmospheric Physics</i> , 2011 , 112, 101-115	2	2
26	Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures. <i>Journal of Geophysical Research</i> , 2010 , 115,		276
25	A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability. <i>Journal of Geophysical Research</i> , 2010 , 115,		170
24	Numerical study for production of space charge within the stratiform cloud. <i>Journal of Earth System Science</i> , 2010 , 119, 627-638	1.8	3
23	Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures 2010 , 115,		1
22	Retrieving the composition and concentration of aerosols over the Indo-Gangetic basin using CALIOP and AERONET data. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	52
21	Highly charged cloud particles in the atmosphere of Venus. <i>Journal of Geophysical Research</i> , 2009 , 114,		29
20	Probable mixing state of aerosols in the Indo-Gangetic Basin, northern India. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	53
19	Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: Long-term (2001\(^1\)005) observations and implications to regional climate. <i>Journal of Geophysical Research</i> , 2008 , 113,		103
18	Dust charging and electrical conductivity in the day and nighttime atmosphere of Mars. <i>Journal of Geophysical Research</i> , 2008 , 113,		30
17	Implications of particle composition and shape to dust radiative effect: A case study from the Great Indian Desert. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	30

LIST OF PUBLICATIONS

16	Modeling optical properties of mineral dust over the Indian Desert. <i>Journal of Geophysical Research</i> , 2008 , 113,		41
15	Profiles of Ion and Aerosol Interactions in Planetary Atmospheres. <i>Space Science Reviews</i> , 2008 , 137, 193-211	7.5	17
14	Numerical predictions of aerosol charging and electrical conductivity of the lower atmosphere of Mars. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	20
13	Estimation of aerosol optical properties and radiative effects in the Ganga basin, northern India, during the wintertime. <i>Journal of Geophysical Research</i> , 2007 , 112,		68
12	Wintertime aerosol characteristics over the Indo-Gangetic Plain (IGP): Impacts of local boundary layer processes and long-range transport. <i>Journal of Geophysical Research</i> , 2007 , 112,		235
11	Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. <i>Journal of Atmospheric Chemistry</i> , 2007 , 58, 1-17	3.2	104
10	Dust events in Kanpur, northern India: Chemical evidence for source and implications to radiative forcing. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	91
9	Evidence for the role of ion-induced particle formation during an atmospheric nucleation event observed in Tropospheric Ozone Production about the Spring Equinox (TOPSE). <i>Journal of Geophysical Research</i> , 2006 , 111,		31
8	Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. <i>Journal of Geophysical Research</i> , 2006 , 111,		93
7	Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Program Land Campaign II at a typical location in the Ganga Basin: 2. Chemical properties. <i>Journal of Geophysical Research</i> , 2006 , 111,		78
6	A parameterization of ion-induced nucleation of sulphuric acid and water for atmospheric conditions. <i>Journal of Geophysical Research</i> , 2005 , 110,		46
5	Aerosol black carbon radiative forcing at an industrial city in northern India. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	94
4	Enhanced layer of black carbon in a north Indian industrial city. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	37
3	Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. <i>Journal of Geophysical Research</i> , 2004 , 109,		288
2	Variability of aerosol parameters over Kanpur, northern India. <i>Journal of Geophysical Research</i> , 2004 , 109,		304
1	Detection and quantification of enteric pathogens in aerosols near open wastewater canals in cities with poor sanitation		2