List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5459729/publications.pdf Version: 2024-02-01

FLISABETTA PANUCCL

#	Article	IF	CITATIONS
1	Evaluation of the eco-compatibility of polyamidoamines by means of seed germination test. Polymer Degradation and Stability, 2022, 197, 109854.	2.7	3
2	Nanosized T1 MRI Contrast Agent Based on a Polyamidoamine as Multidentate Gd Ligand. Molecules, 2022, 27, 174.	1.7	3
3	Semi-Crystalline Hydrophobic Polyamidoamines: A New Family of Technological Materials?. Polymers, 2021, 13, 1018.	2.0	3
4	Polyamidoamines Derived from Natural α-Amino Acids as Effective Flame Retardants for Cotton. Polymers, 2021, 13, 3714.	2.0	13
5	The Thermo-Oxidative Behavior of Cotton Coated with an Intumescent Flame Retardant Glycine-Derived Polyamidoamine: A Multi-Technique Study. Polymers, 2021, 13, 4382.	2.0	11
6	Light-Triggered Trafficking to the Cell Nucleus of a Cationic Polyamidoamine Functionalized with Ruthenium Complexes. ACS Applied Materials & Interfaces, 2020, 12, 34576-34587.	4.0	6
7	Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Frontiers in Bioengineering and Biotechnology, 2020, 8, 132.	2.0	19
8	Highlight on the Mechanism of Linear Polyamidoamine Degradation in Water. Polymers, 2020, 12, 1376.	2.0	7
9	Hydrogen Bonding in a l-Glutamine-Based Polyamidoamino Acid and its pH-Dependent Self-Ordered Coil Conformation. Polymers, 2020, 12, 881.	2.0	5
10	pH-Dependent Chiral Recognition of D- and L-Arginine Derived Polyamidoamino Acids by Self-Assembled Sodium Deoxycholate. Polymers, 2020, 12, 900.	2.0	3
11	Controlled Synthesis of Linear Polyamidoamino Acids. Polymers, 2019, 11, 1324.	2.0	5
12	Mucin Thin Layers: A Model for Mucus-Covered Tissues. International Journal of Molecular Sciences, 2019, 20, 3712.	1.8	10
13	Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 14586-14599.	1.9	15
14	Superior flame retardancy of cotton by synergetic effect of cellulose-derived nano-graphene oxide carbon dots and disulphide-containing polyamidoamines. Polymer Degradation and Stability, 2019, 169, 108993.	2.7	27
15	d-, l- and d,l-Tryptophan-Based Polyamidoamino Acids: pH-Dependent Structuring and Fluorescent Properties. Polymers, 2019, 11, 543.	2.0	12
16	Polyamidoamines: Versatile Bioactive Polymers with Potential for Biotechnological Applications. Chemistry Africa, 2019, 2, 167-193.	1.2	20
17	Sulfur-Based Copolymeric Polyamidoamines as Efficient Flame-Retardants for Cotton. Polymers, 2019, 11, 1904.	2.0	11
18	A new catechol-functionalized polyamidoamine as an effective SPION stabilizer. Colloids and Surfaces B: Biointerfaces, 2019, 174, 260-269.	2.5	9

#	Article	IF	CITATIONS
19	Linear polyamidoamines as novel biocompatible phosphorus-free surface-confined intumescent flame retardants for cotton fabrics. Polymer Degradation and Stability, 2018, 151, 52-64.	2.7	51
20	Comparison of Gene Transfection and Cytotoxicity Mechanisms of Linear Poly(amidoamine) and Branched Poly(ethyleneimine) Polyplexes. Pharmaceutical Research, 2018, 35, 86.	1.7	11
21	Enhanced photoinduced antibacterial activity of a BODIPY photosensitizer in the presence of polyamidoamines. Lasers in Medical Science, 2018, 33, 1401-1407.	1.0	16
22	Self-Structuring in Water of Polyamidoamino Acids with Hydrophobic Side Chains Deriving from Natural α-Amino Acids. Polymers, 2018, 10, 1261.	2.0	10
23	Polyamidoamine Nanoparticles for the Oral Administration of Antimalarial Drugs. Pharmaceutics, 2018, 10, 225.	2.0	17
24	Disulfide-containing polyamidoamines with remarkable flame retardant activity for cotton fabrics. Polymer Degradation and Stability, 2018, 156, 1-13.	2.7	43
25	RGD-mimic polyamidoamine-montmorillonite composites with tunable stiffness as scaffolds for bone tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2164-2175.	1.3	27
26	Self-Ordering Secondary Structure of <scp>d</scp> - and <scp>l</scp> -Arginine-Derived Polyamidoamino Acids. ACS Macro Letters, 2017, 6, 987-991.	2.3	15
27	The AGMA1 polyamidoamine mediates the efficient delivery of siRNA. Journal of Drug Targeting, 2017, 25, 891-898.	2.1	14
28	Cyclodextrin-Based Nanohydrogels Containing Polyamidoamine Units: A New Dexamethasone Delivery System for Inflammatory Diseases. Gels, 2017, 3, 22.	2.1	14
29	Polyâ€ <scp>l</scp> â€Lactic Acid Nanofiber–Polyamidoamine Hydrogel Composites: Preparation, Properties, and Preliminary Evaluation as Scaffolds for Human Pluripotent Stem Cell Culturing. Macromolecular Bioscience, 2016, 16, 1533-1544.	2.1	31
30	One-step synthesis of poly(lactic- <i>co</i> -glycolic acid)- <i>g</i> -poly-1-vinylpyrrolidin-2-one copolymers. Journal of Polymer Science Part A, 2016, 54, 1919-1928.	2.5	2
31	Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases. Scientific Reports, 2016, 6, 33393.	1.6	10
32	The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice. Biomaterials, 2016, 85, 40-53.	5.7	30
33	Design of renewable poly(amidoamine)/hemicellulose hydrogels for heavy metal adsorption. Journal of Applied Polymer Science, 2015, 132, .	1.3	18
34	Atmospheric pressure non-thermal plasma for the production of composite materials. , 2015, , .		0
35	A Luminescent Poly(amidoamine)–Iridium Complex as a New Singlet-Oxygen Sensitizer for Photodynamic Therapy. Inorganic Chemistry, 2015, 54, 544-553.	1.9	75
36	Improved Anti-Tumoral Therapeutic Efficacy of 4-Hydroxynonenal Incorporated in Novel Lipid Nanocapsules in 2D and 3D Models. Journal of Biomedical Nanotechnology, 2015, 11, 2169-2185.	0.5	8

#	Article	IF	CITATIONS
37	The Agmatine-Containing Poly(Amidoamine) Polymer AGMA1 Binds Cell Surface Heparan Sulfates and Prevents Attachment of Mucosal Human Papillomaviruses. Antimicrobial Agents and Chemotherapy, 2015, 59, 5250-5259.	1.4	20
38	Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector. Nanomedicine, 2015, 10, 3401-3414.	1.7	15
39	A soluble biocompatible guanidine-containing polyamidoamine as promoter of primary brain cell adhesion and <i>in vitro</i> cell culturing. Science and Technology of Advanced Materials, 2014, 15, 045007.	2.8	14
40	Covalent immobilization of bioactive poly(amidoamine)s onto plasma-functionalized PLGA surfaces. Materials Research Express, 2014, 1, 035001.	0.8	7
41	Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. Journal of Controlled Release, 2014, 177, 84-95.	4.8	66
42	Agmatine-Containing Poly(amidoamine)s as a Novel Class of Antiviral Macromolecules: Structural Properties and <i>In Vitro</i> Evaluation of Infectivity Inhibition. Antimicrobial Agents and Chemotherapy, 2014, 58, 6315-6319.	1.4	23
43	Amphoteric, Prevailingly Cationic <scp>L</scp> â€ <scp>A</scp> rginine Polymers of Poly(amidoamino) Tj ETQq1 Cellâ€ <scp>P</scp> ermeating Characterizations. Macromolecular Bioscience, 2014, 14, 390-400.	l 0.78431 2.1	.4 rgBT /Ov∈ 36
44	Superparamagnetic iron oxide nanoparticles stabilized by a poly(amidoamine)-rhenium complex as potential theranostic probe. Dalton Transactions, 2014, 43, 1172-1183.	1.6	18
45	The inclusion complex of 4-hydroxynonenal with a polymeric derivative of β-cyclodextrin enhances the antitumoral efficacy of the aldehyde in several tumor cell lines and in a three-dimensional human melanoma model. Free Radical Biology and Medicine, 2013, 65, 765-777.	1.3	14
46	Degradable Poly(amidoamine) Hydrogels as Scaffolds for In Vitro Culturing of Peripheral Nervous System Cells. Macromolecular Bioscience, 2013, 13, 332-347.	2.1	25
47	Fast and quantitative manganese sorption by polyamidoamine resins. Journal of Polymer Science Part A, 2013, 51, 769-773.	2.5	4
48	A Small Molecule Glycosaminoglycan Mimetic Blocks Plasmodium Invasion of the Mosquito Midgut. PLoS Pathogens, 2013, 9, e1003757.	2.1	25
49	Luminescent Rhenium and Ruthenium Complexes of an Amphoteric Poly(amidoamine) Functionalized with 1,10-Phenanthroline. Inorganic Chemistry, 2012, 51, 12776-12788.	1.9	35
50	Heteroâ€difunctional dimers as building blocks for the synthesis of poly(amidoamine)s with heteroâ€difunctional chain terminals and their derivatives. Journal of Polymer Science Part A, 2012, 50, 4947-4957.	2.5	13
51	L -lysine and EDTA polymer mimics as resins for the quantitative and reversible removal of heavy metal ion water pollutants. Journal of Polymer Science Part A, 2012, 50, 5000-5010.	2.5	9
52	Enhanced Antiviral Activity of Acyclovir Loaded into Nanoparticles. Methods in Enzymology, 2012, 509, 1-19.	0.4	28
53	Poly(amidoamine) Hydrogels as Scaffolds for Cell Culturing and Conduits for Peripheral Nerve Regeneration. International Journal of Polymer Science, 2011, 2011, 1-20.	1.2	4
54	Biological performance of a novel biodegradable polyamidoamine hydrogel as guide for peripheral nerve regeneration. Journal of Biomedical Materials Research - Part A, 2011, 98A, 19-30.	2.1	47

#	Article	IF	CITATIONS
55	In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 183-191.	1.6	61
56	Direct Microfabrication of Topographical and Chemical Cues for the Guided Growth of Neural Cell Networks on Polyamidoamine Hydrogels. Macromolecular Bioscience, 2010, 10, 842-852.	2.1	43
57	Synthesis of polymers containing regularly distributed tetrathiaâ€{7]â€elicene units along the backbone. Journal of Polymer Science Part A, 2010, 48, 4704-4710.	2.5	6
58	Amphoteric Agmatine Containing Polyamidoamines as Carriers for Plasmid DNA In Vitro and In Vivo Delivery. Biomacromolecules, 2010, 11, 2667-2674.	2.6	45
59	Enhanced antiviral activity of Acyclovir loaded into β-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. Journal of Controlled Release, 2009, 137, 116-122.	4.8	78
60	Acidâ€base properties of poly(amidoamine)s. Journal of Polymer Science Part A, 2009, 47, 6977-6991.	2.5	37
61	Effect of pH on Water Proton NMR Relaxation in Agmatine-Containing Poly(amidoamine) Hydrogels. Langmuir, 2009, 25, 2449-2455.	1.6	8
62	Tricarbonylâ^'Rhenium Complexes of a Thiol-Functionalized Amphoteric Poly(amidoamine). Biomacromolecules, 2009, 10, 3273-3282.	2.6	25
63	Sterically stabilized self-assembling reversibly cross-linked polyelectrolyte complexes with nucleic acids for environmental and medical applications. Biochemical Society Transactions, 2009, 37, 713-716.	1.6	11
64	Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture. Journal of Nanobiotechnology, 2008, 6, 14.	4.2	27
65	Poly(4â€acryloylmorpholine) oligomers carrying a βâ€cyclodextrin residue at one terminus. Journal of Polymer Science Part A, 2008, 46, 1607-1617.	2.5	29
66	Functionalization and molecular dynamics study of carboxyâ€ŧerminated poly(1â€vinylpyrrolidinâ€2â€one): A potential soluble carrier of biomolecules. Journal of Polymer Science Part A, 2008, 46, 1683-1698.	2.5	7
67	Preparation and in vitro evaluation of the antiviral activity of the Acyclovir complex of a β-cyclodextrin/poly(amidoamine) copolymer. Journal of Controlled Release, 2008, 126, 17-25.	4.8	42
68	Poly(amidoamine)s carrying TEMPO residues for NMR imaging applications. New Journal of Chemistry, 2008, 32, 323-332.	1.4	20
69	Quantitative Investigation by Atomic Force Microscopy of Supported Phospholipid Layers and Nanostructures on Cholesterol-Functionalized Glass Surfaces. Langmuir, 2008, 24, 7830-7841.	1.6	7
70	Water/polymer interactions in poly(amidoamine) hydrogels by H1 nuclear magnetic resonance relaxation and magnetization transfer. Journal of Chemical Physics, 2008, 129, 064511.	1.2	14
71	Poly(amidoamine) Conjugates with Disulfide-Linked Cholesterol Pendants Self-Assembling into Redox-Sensitive Nanoparticles. Biomacromolecules, 2008, 9, 2693-2704.	2.6	40
72	Novel Poly(amidoamine)â€Based Hydrogels as Scaffolds for Tissue Engineering. Macromolecular Symposia, 2008, 266, 41-47.	0.4	13

#	Article	IF	CITATIONS
73	Polymerization Kinetics of Poly(amidoamine)s in Different Solvents. Journal of Bioactive and Compatible Polymers, 2007, 22, 219-231.	0.8	17
74	Novel Amphoteric Cystine-Based Poly(amidoamine)s Responsive to Redox Stimuli. Macromolecules, 2007, 40, 4785-4793.	2.2	30
75	Prevailingly Cationic Agmatine-Based Amphoteric Polyamidoamine as a Nontoxic, Nonhemolytic, and "Stealthlike―DNA Complexing Agent and Transfection Promoter. Biomacromolecules, 2007, 8, 1498-1504.	2.6	44
76	Water/Polymer Interactions in a Poly(amidoamine) Hydrogel Studied by NMR Spectroscopy. Biomacromolecules, 2007, 8, 2936-2942.	2.6	19
77	Poly(amidoamine)s with 2-Dithiopyridine Side Substituents as Intermediates to Peptide–Polymer Conjugates. Macromolecular Rapid Communications, 2007, 28, 1243-1250.	2.0	13
78	Structural characterisation of poly(amidoamine) networks via high-resolution magic angle spinning NMR. Magnetic Resonance in Chemistry, 2007, 45, 51-58.	1.1	18
79	Synthesis, Physicochemical Properties, and Preliminary Biological Characterizations of a Novel Amphoteric Agmatine-Based Poly(amidoamine) with RGD-Like Repeating Units. Biomacromolecules, 2006, 7, 1215-1222.	2.6	60
80	Novel polyamidoamine-based hydrogel with an innovative molecular architecture as a Co2+-, Ni2+-, and Cu2+-sorbing material: Cyclovoltammetry and extended X-ray absorption fine structure studies. Journal of Polymer Science Part A, 2006, 44, 2316-2327.	2.5	23
81	Amphiphilic block copolymers containing poly(vinylpyrrolidone) and poly(caprolactone). Journal of Controlled Release, 2006, 116, e15-e17.	4.8	0
82	NMR Spectroscopy and MALDI-TOF MS Characterisation of End-Functionalised PVP Oligomers Prepared with Different Esters as Chain Transfer Agents. Macromolecular Bioscience, 2006, 6, 216-227.	2.1	17
83	New Stimuli Responsive Poly(1-vinylpyrrolidin-2-one) Bearing Pendant Activated Disulfide Groups. Macromolecular Rapid Communications, 2006, 27, 1060-1066.	2.0	12
84	Micro- and Nanoscale Modification of Poly(2-hydroxyethyl methacrylate) Hydrogels by AFM Lithography and Nanoparticle Incorporation. Journal of Nanoscience and Nanotechnology, 2005, 5, 425-430.	0.9	2
85	Novel Poly(amido-amine)-Based Hydrogels as Scaffolds for Tissue Engineering. Macromolecular Bioscience, 2005, 5, 613-622.	2.1	60
86	New poly(amidoamine)s containing disulfide linkages in their main chain. Journal of Polymer Science Part A, 2005, 43, 1404-1416.	2.5	119
87	Biodegradable Polymers from Renewable Sources:Â Rheological Characterization of Hemicellulose-Based Hydrogels. Biomacromolecules, 2005, 6, 684-690.	2.6	93
88	Novel Agmatine-Containing Poly(amidoamine) Hydrogels as Scaffolds for Tissue Engineering. Biomacromolecules, 2005, 6, 2229-2235.	2.6	70
89	Synthesis of 3,3-Di(ethoxycarbonyl)-1-vinylpyrrolidin-2-one and Determination of Its Reactivity Ratios with 1-Vinylpyrrolidin-2-one. Macromolecules, 2005, 38, 8211-8219.	2.2	19
90	PHEMA Hydrogels Obtained by a Novel Low-Heat Curing Procedure with a Potential for In Situ Preparation. Macromolecular Bioscience, 2004, 4, 591-600.	2.1	6

#	Article	IF	CITATIONS
91	End-Functionalised 1-Vinyl-2-Pyrrolidinone Oligomers Bearing Lactate Functions at One End. Macromolecular Bioscience, 2004, 4, 706-713.	2.1	14
92	2-[(1-Imidazolyl)formyloxy]ethyl Methacrylate as Selective Methacryloylating Agent: Kinetics of Reaction with Model Alcohols and Amines. Macromolecular Bioscience, 2003, 3, 742-748.	2.1	2
93	New Hemicellulose-Based Hydrogels. ACS Symposium Series, 2003, , 347-359.	0.5	5
94	Polycaprolactoneâ^Poly(ethylene glycol) Multiblock Copolymers as Potential Substitutes for Di(ethylhexyl) Phthalate in Flexible Poly(vinyl chloride) Formulations. Biomacromolecules, 2003, 4, 181-188.	2.6	58
95	New Biodegradable Polymers from Renewable Sources – Segmented Copolyesters of Poly(1,3-Propanediol Succinate) and Poly(Ethylene Glycol). Journal of Bioactive and Compatible Polymers, 2002, 17, 209-219.	0.8	14
96	Elastomeric Polymers. 2. NMR and NMR Imaging Characterization of Cross-Linked PDMS. Macromolecules, 2002, 35, 1722-1729.	2.2	26
97	Polymeric Hydrogels in Drug Release. , 2002, , 63-74.		0
98	Elastomeric Polymers. 1. Application of Proton NMR Imaging to the Morphological Study of a Silicone Rubber. Macromolecules, 2002, 35, 1714-1721.	2.2	2
99	Polymers from Renewable Resources. Advances in Polymer Science, 2002, , 139-161.	0.4	93
100	Bioerodible hydrogels based on 2-hydroxyethyl methacrylate: Synthesis and characterization. Journal of Applied Polymer Science, 2002, 85, 2729-2741.	1.3	13
101	New biodegradable polymers from renewable sources: Polyester-carbonates based on 1,3-propylene-co-1,4-cyclohexanedimethylene succinate. Journal of Polymer Science Part A, 2001, 39, 2508-2519.	2.5	54
102	Improved polyimide/metal adhesion by chemical modification approaches. Journal of Applied Polymer Science, 2001, 82, 1971-1985.	1.3	40
103	New segmented poly(ester-urethane)s from renewable resources. Journal of Polymer Science Part A, 2001, 39, 630-639.	2.5	28
104	New MethacryloxyN-Vinyl-2-pyrrolidinone- and Lactone-Based Macromers. Macromolecular Bioscience, 2001, 1, 126-135.	2.1	4
105	Biodegradable Polymers from Renewable Sources. New Hemicellulose-Based Hydrogels. Macromolecular Rapid Communications, 2001, 22, 962-967.	2.0	138
106	Grafting of ω-Functionalized PVP Oligomers onto Dextran: A Novel Route to Biodegradable and Biocompatible Polymers. Macromolecular Rapid Communications, 2001, 22, 1474.	2.0	14
107	Polycarboxylated Derivatives of b.beta;-Cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39, 139-143.	1.6	7
108	New biodegradable polymers from renewable sources. High molecular weight poly(ester carbonate)s from succinic acid and 1,3-propanediol. Macromolecular Rapid Communications, 2000, 21, 680-684.	2.0	80

#	Article	IF	CITATIONS
109	New ester and lactone end-functionalized N-vinyl-2-pyrrolidinone oligomers. Macromolecular Chemistry and Physics, 2000, 201, 1219-1225.	1.1	18
110	Multisensor array of mass microbalances for chemical detection based on resonant piezo-layers of screen-printed PZT. Sensors and Actuators B: Chemical, 2000, 68, 81-87.	4.0	41
111	2-[(1-Imidazolyl)formyloxy]ethyl methacrylate as a new chemical precursor of functional polymers. Macromolecular Rapid Communications, 1999, 20, 1-6.	2.0	17
112	Synthesis, characterisation and antitumour activity of platinum(II) complexes of novel functionalised poly(amido amine)s. Macromolecular Chemistry and Physics, 1999, 200, 1644-1654.	1.1	92
113	2-[(1-Imidazolyl)formyloxy]ethyl methacrylate as a new chemical precursor of functional polymers. , 1999, 20, 1.		1
114	Synthesis, characterisation and antitumour activity of platinum(II) complexes of novel functionalised poly(amido amine)s. Macromolecular Chemistry and Physics, 1999, 200, 1644-1654.	1.1	1
115	A novel modification of poly(L-lysine) leading to a soluble cationic polymer with reduced toxicity and with potential as a transfection agent. Macromolecular Chemistry and Physics, 1998, 199, 2565-2575.	1.1	37
116	Development and application of mass sensors based on flexural resonances in alumina beams. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1996, 43, 601-608.	1.7	38
117	Multifunctional Polymers for Sensing Applications. Polymers for Advanced Technologies, 1996, 7, 529-536.	1.6	4
118	Synthesis and molecular weight characterization of end-functionalized N-vinyl-2-pyrrolidone oligomers. Macromolecular Chemistry and Physics, 1995, 196, 763-774.	1.1	49
119	Structural characterisation of a new heparinisable material based on ethylene/vinyl alcohol/vinyl acetate terpolymer and a poly(amido-amine). Macromolecular Chemistry and Physics, 1995, 196, 2123-2138.	1.1	0
120	Synthesis of low molecular weight poly(N-acryloylmorpholine) end-functionalized with primary amino groups, and its use as macromonomer for the preparation of poly(amidoamines). Macromolecular Chemistry and Physics, 1995, 196, 2927-2939.	1.1	15
121	Use of poly(amidoamines) as CO2- and Si2-sensitive material for gravimetric sensors. Mikrochimica Acta, 1995, 120, 257-270.	2.5	10
122	On the catalytic activity of Mo(VI)-grafted poly(thioether-amido-acid) crosslinked resins in liquid-phase cyclohexene epoxidation with t-butyl hydroperoxide. Reactive and Functional Polymers, 1995, 26, 67-74.	2.0	5
123	Modification of albumins by grafting poly(amido amine) chains. Polymer, 1995, 36, 2989-2994.	1.8	19
124	Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments. Biomaterials, 1995, 16, 1423-1428.	5.7	37
125	Physico-Chemical and Biological Properties of Monofunctional Hydroxy Teriminating Poly(N-Vinylpyrrolidone) Conjugated Superoxide Dismutase. Journal of Bioactive and Compatible Polymers, 1995, 10, 103-120.	0.8	38
126	On the suitability of urethane bonds between the carrier and the drug moiety in poly(ethyleneglycol)-based oligomeric prodrugs. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 133-139.	1.9	5

#	Article	IF	CITATIONS
127	Degradation behaviour of ionic stepwise polyaddition polymers of medical interest. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 833-844.	1.9	28
128	Pharmacokinetic results on naproxen prodrugs based on poly(ethyleneglycol)s. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 141-147.	1.9	11
129	A comparison between the hemolytic and antibacterial activities of new quaternary ammonium polymers. Journal of Biomaterials Science, Polymer Edition, 1995, 6, 533-539.	1.9	10
130	Low Molecular Weight End-Functionalized Poly(N-Vinylpyrrolidinone) for the Modification of Polypeptide Aminogroups. Journal of Bioactive and Compatible Polymers, 1994, 9, 411-428.	0.8	31
131	A Polymer-Triton X-100 Conjugate Capable of PH-Dependent Red Blood Cell Lysis: A Model System Illustrating the Possibility of Drug Delivery Within Acidic Intracellular Compartments. Journal of Drug Targeting, 1994, 2, 341-347.	2.1	36
132	Poly(ethyleneglycol)s-based hydrogels as coatings for relative humidity sensors. Polymer Gels and Networks, 1994, 2, 119-133.	0.6	7
133	Synthesis and molecular weight characterization of low molecular weight end-functionalized poly(4-acryloylmorpholine). Macromolecular Chemistry and Physics, 1994, 195, 3469-3479.	1.1	45
134	Block copolymers containing poly(ethylene glycol) and poly(thioether/amido acid) segments. Macromolecular Rapid Communications, 1994, 15, 659-667.	2.0	3
135	New high-molecular-weight poly(ester-carbonates) by chain extension of poly(lactic-glycolic acid). Macromolecular Rapid Communications, 1994, 15, 683-690.	2.0	7
136	Recent results on functional polymers and macromonomers of interest as biomaterials or for biomaterial modification. Biomaterials, 1994, 15, 1235-1241.	5.7	56
137	In situ polymerization of functional monomers in rubbers: 1. Modification of silicone rubbers by a poly(ester thioether amine) based on piperazine. Polymer, 1994, 35, 5571-5576.	1.8	4
138	Some physical correlations with the catalytic activity of Mo(VI)-grafted carboxylated resins used as epoxidation catalysts. Studies in Surface Science and Catalysis, 1993, 78, 425-430.	1.5	2
139	Tertiary Amino Polymers by Polyaddition of 2,2′-Alkylenediiminodiethanethiols to 1,4-Bismethacryoylpiperazine. Polymer Journal, 1993, 25, 625-631.	1.3	5
140	Thermal characterization of macromolecular metal complexes of mo(VI) as heterogeneous oxidation catalysts. Makromolekulare Chemie Macromolecular Symposia, 1992, 59, 381-387.	0.6	3
141	Structural analysis of new basic multifunctional polymers by the comparison method. Polymer, 1992, 33, 944-950.	1.8	4
142	Synthesis of a new family of poly(amido-amine)s carrying poly(oxyethylene) side chains. Die Makromolekulare Chemie, 1992, 193, 937-943.	1.1	9
143	New quaternary ammonium polymers as antimicrobial agents. Part II. Alkylation products of linear aliphatic poly (aminodisulphides). Journal of Biomaterials Science, Polymer Edition, 1991, 2, 255-261.	1.9	10
144	New Polydentate Mo(vi) - Grafted Poly(Amido Amine) Resins as Heterogeneous Epoxidation Catalysts. Studies in Surface Science and Catalysis, 1991, , 431-436.	1.5	5

#	Article	IF	CITATIONS
145	New Functional Polymers for Medical Applications. Polymer Journal, 1991, 23, 541-550.	1.3	8
146	New basic multifunctional polymers: 5. Poly(esterthioetheramine)s by polyaddition of 2,2′-alkylenediimino diethanethiols to bisacrylic and bismethacrylic esters. Polymer, 1991, 32, 2876-2879.	1.8	15
147	Poly(amidoamine)s with potential as drug carriers: degradation and cellular toxicity. Journal of Biomaterials Science, Polymer Edition, 1991, 2, 303-315.	1.9	65
148	New carboxylated Mo(VI)-grafted poly(amidoamine) resins as heterogeneous oxygen transfer catalysts. Journal of Applied Polymer Science, 1990, 41, 1923-1927.	1.3	11
149	Hydroxyt-Terminated Polyvinylpyrrolidone for the Modification of Polypeptides. Journal of Bioactive and Compatible Polymers, 1990, 5, 167-178.	0.8	27
150	A New Synthetic Method for Amino-Terminated Poly (Ethyleneglycol) Derivatives. Synthetic Communications, 1990, 20, 2951-2957.	1.1	17
151	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1988, 9, 807-811.	1.1	13
152	Poly(esterthioetheramines), a new family of tertiary amino polymers. Journal of Polymer Science, Polymer Letters Edition, 1988, 26, 357-360.	0.4	17
153	Synthetic catalytic polymers containing oxime groups: Effect of substrate structure on esterolysis of p-nitrophenyl esters. Reactive Polymers, Ion Exchangers, Sorbents, 1988, 8, 267-272.	0.1	0
154	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1987, 8, 549-553.	1.1	12
155	Catalytic esterolysis of p-nitrophenyl esters by optically active polymeric oximes. Polymer, 1985, 26, 1191-1194.	1.8	1