
Yongkai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5458489/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmon-enhanced upconversion photoluminescence: Mechanism and application. Reviews in Physics, 2019, 4, 100026.	4.4	105
2	Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor. Applied Materials Today, 2019, 14, 166-174.	2.3	69
3	Plasmonic chirality of L-shaped nanostructure composed of two slices with different thickness. Optics Express, 2016, 24, 2307.	1.7	53
4	Extraordinary Optical Transmission Property of X-Shaped Plasmonic Nanohole Arrays. Plasmonics, 2014, 9, 203-207.	1.8	40
5	Nanoscale Vertical Arrays of Gold Nanorods by Self-Assembly: Physical Mechanism and Application. Nanoscale Research Letters, 2019, 14, 118.	3.1	40
6	Co-occurrence of circular dichroism and asymmetric transmission in twist nanoslit-nanorod Arrays. Optics Express, 2016, 24, 16425.	1.7	31
7	Tunable Chiroptical Response of Chiral Plasmonic Nanostructures Fabricated with Chiral Templates through Oblique Angle Deposition. Journal of Physical Chemistry C, 2017, 121, 1299-1304.	1.5	31
8	Active Control and Biosensing Application of Induced Chirality between Symmetric Metal and Graphene Nanostructures. Journal of Physical Chemistry C, 2019, 123, 24754-24762.	1.5	22
9	Induced chirality in micron wave through electromagnetic coupling between chiral molecules and graphene nanostructures. Carbon, 2017, 120, 203-208.	5.4	20
10	Ultra-broadband conversion of OAM mode near the dispersion turning point in helical fiber gratings. OSA Continuum, 2020, 3, 77.	1.8	19
11	Tunable Circular Dichroism of Achiral Graphene Plasmonic Structures. Plasmonics, 2017, 12, 829-833.	1.8	16
12	Excitation of high-quality orbital angular momentum vortex beams in an adiabatically helical-twisted single-mode fiber. Optics Express, 2021, 29, 8441.	1.7	16
13	Dynamically adjustable-induced THz circular dichroism and biosensing application of symmetric silicon-graphene-metal composite nanostructures. Optics Express, 2021, 29, 8087.	1.7	14
14	Two-Dimensional Self-Assembly of Au@Ag Core–Shell Nanocubes with Different Permutations for Ultrasensitive SERS Measurements. ACS Omega, 2022, 7, 3312-3323.	1.6	14
15	Strong circular dichroism enhancement by plasmonic coupling between graphene and h-shaped chiral nanostructure. Optics Express, 2019, 27, 33869.	1.7	13
16	Tunable asymmetric transmission through tilted rectangular nanohole arrays in a square lattice. Optics Express, 2018, 26, 1199.	1.7	12
17	Tunable chiroptical response of chiral system composed of a nanorod coupled with a nanosurface. Applied Surface Science, 2019, 467-468, 684-690.	3.1	12
18	Circular dichroism enhancement in grapheme with planar metal nanostructures: A computational study. Applied Surface Science, 2020, 508, 145070.	3.1	11

Yongkai Wang

#	Article	IF	CITATIONS
19	Plasmon-exciton coupling for nanophotonic sensing on chip. Optics Express, 2020, 28, 20817.	1.7	11
20	Extraordinary Optical Transmission of Broadband Through Tapered Multilayer Slits. Plasmonics, 2015, 10, 547-551.	1.8	10
21	Circular Dichroism Enhancement and Biosensing Application of Composite Dielectric Chiral Nanostructures. Journal of Physical Chemistry C, 2021, 125, 25243-25252.	1.5	10
22	Direct and indirect coupling mechanisms in a chiral plasmonic system. Journal Physics D: Applied Physics, 2016, 49, 405104.	1.3	9
23	Nanoscale engineering of ring-mounted nanostructure around AAO nanopores for highly sensitive and reliable SERS substrates. Nanotechnology, 2022, 33, 135501.	1.3	9
24	Deep learning for circular dichroism of nanohole arrays. New Journal of Physics, 2022, 24, 063005.	1.2	9
25	A General Mechanism for Achieving Circular Dichroism in a Chiral Plasmonic System. Annalen Der Physik, 2018, 530, 1800142.	0.9	8
26	Plasmonic alloy nanochains assembled via dielectrophoresis for ultrasensitive SERS. Optics Express, 2021, 29, 36857.	1.7	8
27	Manipulating Surface Plasmon Polaritons Using F-Shaped Nanoslits Array. IEEE Photonics Technology Letters, 2014, 26, 1247-1250.	1.3	7
28	Chiral near-fields around chiral dolmen nanostructure. Journal Physics D: Applied Physics, 2017, 50, 474004.	1.3	6
29	Enhanced circular dichroism and biosensing application of planar chiral nanostructure by covering graphene nanobelts. European Physical Journal D, 2021, 75, 1.	0.6	5
30	Double-Layer Chiral System with Induced Circular Dichroism by Near-Field Coupling. Journal of Physical Chemistry C, 2021, 125, 25851-25858.	1.5	5
31	Asymmetric transmission of obliquely intersecting nanoslit arrays in a gold film. Applied Optics, 2017, 56, 5781.	0.9	4
32	Circular dichroism enhancement and dynamically adjustment in planar metal chiral split rings with graphene sheets arrays. Nanotechnology, 2021, 32, 385205.	1.3	4
33	Surface-Plasmon-Assisted Growth, Reshaping and Transformation of Nanomaterials. Nanomaterials, 2022, 12, 1329.	1.9	4
34	Circular Dichroism Induced by the Coupling between Surface Plasmon Polaritons and Localized Surface Plasmon Resonances in a Double-Layer Complementary Nanostructure. Journal of Physical Chemistry C, 2022, 126, 10159-10166.	1.5	4
35	Circular dichroism induced by tunable symmetry breaking in vertical Q-shaped nanostructure. Optics Communications, 2020, 461, 125241.	1.0	3
36	Transmission characteristics of surface plasmon polaritons through a metallic rectangle above a metallic film. Journal of Modern Optics, 2016, 63, 411-416.	0.6	1

#	Article	IF	CITATIONS
37	Enhanced circular dichroism of cantilevered nanostructures by distorted plasmon. Optics Express, 0, , .	1.7	1
38	Broad Band-Pass and Band-Stop Transmissions Through the Hybrid Gratings of Rectangle and Triangle. Journal of Lightwave Technology, 2016, 34, 1350-1353.	2.7	0