Francisco Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457938/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermal stability of choline chloride deep eutectic solvents by TGA/FTIR-ATR analysis. Journal of Molecular Liquids, 2018, 260, 37-43.	4.9	298
2	Density and Molar Volume Predictions Using COSMO-RS for Ionic Liquids. An Approach to Solvent Design. Industrial & Engineering Chemistry Research, 2007, 46, 6041-6048.	3.7	224
3	Understanding the Physical Absorption of CO ₂ in Ionic Liquids Using the COSMO-RS Method. Industrial & Engineering Chemistry Research, 2011, 50, 3452-3463.	3.7	174
4	Thermophysical Properties of 1-Ethyl-3-methylimidazolium Ethylsulfate and 1-Butyl-3-methylimidazolium Methylsulfate Ionic Liquids. Journal of Chemical & Engineering Data, 2007, 52, 1979-1983.	1.9	155
5	Liquid–Liquid Extraction of Toluene from Heptane Using [emim][DCA], [bmim][DCA], and [emim][TCM] Ionic Liquids. Industrial & Engineering Chemistry Research, 2013, 52, 2714-2720.	3.7	155
6	Estimation of toxicity of ionic liquids in Leukemia Rat Cell Line and Acetylcholinesterase enzyme by principal component analysis, neural networks and multiple lineal regressions. Journal of Hazardous Materials, 2009, 164, 182-194.	12.4	142
7	Task-specific ionic liquids for efficient ammonia absorption. Separation and Purification Technology, 2011, 82, 43-52.	7.9	140
8	Thermal Properties of Cyano-Based Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 2187-2193.	1.9	133
9	Volumetric, Transport and Surface Properties of [bmim][MeSO ₄] and [emim][EtSO ₄] Ionic Liquids As a Function of Temperature. Journal of Chemical & Engineering Data, 2008, 53, 1518-1522.	1.9	106
10	Comparison of lignin and cellulose solubilities in ionic liquids by COSMO-RS analysis and experimental validation. Industrial Crops and Products, 2012, 37, 155-163.	5.2	105
11	CO ₂ /N ₂ Selectivity Prediction in Supported Ionic Liquid Membranes (SILMs) by COSMO-RS. Industrial & Engineering Chemistry Research, 2011, 50, 5739-5748.	3.7	97
12	Liquid–liquid equilibria for {hexane+benzene+1-ethyl-3-methylimidazolium ethylsulfate} at (298.2, 313.2) Tj ET	Qq0_0 0 re	gBT_/Overloch
13	Optimising an artificial neural network for predicting the melting point of ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 5826.	2.8	88
14	Effect of Relative Humidity of Air on Density, Apparent Molar Volume, Viscosity, Surface Tension, and Water Content of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid. Journal of Chemical & Engineering Data, 2008, 53, 923-928.	1.9	84
15	Excess Enthalpy of Monoethanolamine + Ionic Liquid Mixtures: How Good are COSMO-RS Predictions?. Journal of Physical Chemistry B, 2014, 118, 11512-11522.	2.6	82
16	FTIR analysis of lignin regenerated from <i>Pinus radiata</i> and <i>Eucalyptus globulus</i> woods dissolved in imidazoliumâ€based ionic liquids. Journal of Chemical Technology and Biotechnology, 2012, 87, 472-480.	3.2	80

17	Development of an a Priori Ionic Liquid Design Tool. 1. Integration of a Novel COSMO-RS Molecular Descriptor on Neural Networks. Industrial & Engineering Chemistry Research, 2008, 47, 4523-4532.	3.7	79	

18Choline Chloride-Based Deep Eutectic Solvents in the Dearomatization of Gasolines. ACS Sustainable
Chemistry and Engineering, 2018, 6, 1039-1047.6.778

FRANCISCO RODRIGUEZ

#	Article	IF	CITATIONS
19	Anion Effects on Kinetics and Thermodynamics of CO ₂ Absorption in Ionic Liquids. Journal of Physical Chemistry B, 2013, 117, 3398-3406.	2.6	77
20	Selection of Ionic Liquids for Enhancing the Gas Solubility of Volatile Organic Compounds. Journal of Physical Chemistry B, 2013, 117, 296-306.	2.6	75
21	Effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites. Composites Part B: Engineering, 2015, 68, 185-192.	12.0	74
22	Screening ionic liquids as suitable ammonia absorbents on the basis of thermodynamic and kinetic analysis. Separation and Purification Technology, 2012, 95, 188-195.	7.9	73
23	Physical Properties of <i>N</i> -Butylpyridinium Tetrafluoroborate and <i>N</i> -Butylpyridinium Bis(trifluoromethylsulfonyl)imide Binary Ionic Liquid Mixtures. Journal of Chemical & Engineering Data, 2012, 57, 1318-1325.	1.9	72
24	Selective extraction of toluene from n-heptane using [emim][SCN] and [bmim][SCN] ionic liquids as solvents. Journal of Chemical Thermodynamics, 2014, 79, 266-271.	2.0	70
25	Effect of Cationic and Anionic Chain Lengths on Volumetric, Transport, and Surface Properties of 1-Alkyl-3-methylimidazolium Alkylsulfate Ionic Liquids at (298.15 and 313.15) K. Journal of Chemical & Engineering Data, 2009, 54, 1297-1301.	1.9	67
26	A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents. Physical Chemistry Chemical Physics, 2010, 12, 1991.	2.8	67
27	COSMO-based/Aspen Plus process simulation of the aromatic extraction from pyrolysis gasoline using the {[4empy][NTf 2] + [emim][DCA]} ionic liquid mixture. Separation and Purification Technology, 2018, 190, 211-227.	7.9	67
28	Ternary Liquidâ^'Liquid Equilibria Measurement for Hexane and Benzene with the Ionic Liquid 1-Butyl-3-methylimidazolium Methylsulfate at <i>T</i> = (298.2, 313.2, and 328.2) K. Journal of Chemical & Engineering Data, 2010, 55, 258-261.	1.9	66
29	Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. Green Chemistry, 2011, 13, 709.	9.0	66
30	Solubilities of Phenol and Pyrocatechol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data, 2001, 46, 918-921.	1.9	65
31	A Novel Method To Quantify the Adulteration of Extra Virgin Olive Oil with Low-Grade Olive Oils by UVâ^'Vis. Journal of Agricultural and Food Chemistry, 2010, 58, 1679-1684.	5.2	65
32	COSMO-RS Studies: Structure–Property Relationships for CO ₂ Capture by Reversible Ionic Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 16066-16073.	3.7	65
33	Liquid–liquid extraction of toluene from n-heptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids. Chemical Engineering Journal, 2012, 180, 210-215.	12.7	65
34	Diffusion Coefficients of CO ₂ in Ionic Liquids Estimated by Gravimetry. Industrial & Engineering Chemistry Research, 2014, 53, 13782-13789.	3.7	64
35	Development of an a Priori Ionic Liquid Design Tool. 2. Ionic Liquid Selection through the Prediction of COSMO-RS Molecular Descriptor by Inverse Neural Network. Industrial & (Engineering Chemistry Research, 2009, 48, 2257-2265.	3.7	60
36	Relation between differential solubility of cellulose and lignin in ionic liquids and activity coefficients. RSC Advances, 2013, 3, 3453.	3.6	58

#	Article	IF	CITATIONS
37	Separation of toluene from n-heptane, 2,3-dimethylpentane, and cyclohexane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids as extraction solvents. Separation and Purification Technology, 2013, 120, 392-401.	7.9	57
38	Liquid–liquid extraction of toluene from n-heptane by {[emim][TCM]+[emim][DCA]} binary ionic liquid mixtures. Fluid Phase Equilibria, 2014, 364, 48-54.	2.5	57
39	Separation of toluene and heptane by liquid–liquid extraction using z-methyl-N-butylpyridinium tetrafluoroborate isomers (z=2, 3, or 4) at T=313.2 K. Journal of Chemical Thermodynamics, 2010, 42, 1004-1008.	2.0	55
40	Physical Properties of Binary and Ternary Mixtures of 2-Propanol, Water, and 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid. Journal of Chemical & Engineering Data, 2012, 57, 1165-1173.	1.9	53
41	Mechanical, thermal and morphological characterization of cellulose fiber-reinforced phenolic foams. Composites Part B: Engineering, 2015, 75, 367-372.	12.0	53
42	N-butylpyridinium bis-(trifluoromethylsulfonyl)imide ionic liquids as solvents for the liquid–liquid extraction of aromatics from their mixtures with alkanes: Isomeric effect of the cation. Fluid Phase Equilibria, 2011, 301, 62-66.	2.5	52
43	Liquidâ^'Liquid Equilibria for the Ternary Systems {Heptane + Toluene + <i>N</i> -Butylpyridinium Tetrafluoroborate or <i>N</i> -Hexylpyridinium Tetrafluoroborate} at <i>T</i> = 313.2 K. Journal of Chemical & Engineering Data, 2010, 55, 2862-2865.	1.9	51
44	Liquid–Liquid Extraction of BTEX from Reformer Gasoline Using Binary Mixtures of [4empy][Tf ₂ N] and [emim][DCA] Ionic Liquids. Energy & Fuels, 2014, 28, 6666-6676.	5.1	50
45	Effects of formulation variables on density, compressive mechanical properties and morphology of wood flour-reinforced phenolic foams. Composites Part B: Engineering, 2014, 56, 546-552.	12.0	48
46	Vapor–liquid equilibria of {n-heptane+toluene+[emim][DCA]} system by headspace gas chromatography. Fluid Phase Equilibria, 2015, 387, 209-216.	2.5	47
47	Separation of aromatics from n -alkanes using tricyanomethanide-based ionic liquids: Liquid-liquid extraction, vapor-liquid separation, and thermophysical characterization. Journal of Molecular Liquids, 2016, 223, 880-889.	4.9	47
48	Dicyanamide-based ionic liquids in the liquid–liquid extraction of aromatics from alkanes: Experimental evaluation and computational predictions. Chemical Engineering Research and Design, 2016, 109, 561-572.	5.6	47
49	Enhanced separation of benzene and cyclohexane by homogeneous extractive distillation using ionic liquids as entrainers. Separation and Purification Technology, 2020, 240, 116583.	7.9	46
50	Solubility and Diffusivity of CO ₂ in [hxmim][NTf ₂], [omim][NTf ₂], and [dcmim][NTf ₂] at <i>T</i> = (298.15, 308.15, and 323.15) K and Pressures up to 20 bar. Journal of Chemical & Engineering Data, 2014, 59, 212-217.	1.9	45
51	Lignin particle- and wood flour-reinforced phenolic foams: Friability, thermal stability and effect of hygrothermal aging on mechanical properties and morphology. Composites Part B: Engineering, 2015, 80, 154-161.	12.0	44
52	Thermal stability, specific heats, and surface tensions of ([emim][DCA]+[4empy][Tf2N]) ionic liquid mixtures. Journal of Chemical Thermodynamics, 2014, 76, 152-160.	2.0	43
53	Design of the recovery section of the extracted aromatics in the separation of BTEX from naphtha feed to ethylene crackers using [4empy][Tf2N] and [emim][DCA] mixed ionic liquids as solvent. Separation and Purification Technology, 2017, 180, 149-156.	7.9	43
54	Evaluation of hardwood and softwood fractionation using autohydrolysis and ionic liquid microwave pretreatment. Biomass and Bioenergy, 2018, 117, 190-197.	5.7	42

#	Article	IF	CITATIONS
55	Modelling of carbon dioxide solubility in ionic liquids at sub and supercritical conditions by neural networks and mathematical regressions. Chemometrics and Intelligent Laboratory Systems, 2008, 93, 149-159.	3.5	41
56	Kinetic Modeling of Kraft Delignification ofEucalyptus globulus. Industrial & Engineering Chemistry Research, 1997, 36, 4114-4125.	3.7	40
57	Estimation of ternary liquid–liquid equilibria for arene/alkane/ionic liquid mixtures using neural networks. Physical Chemistry Chemical Physics, 2008, 10, 5114.	2.8	39
58	Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus wood using the protic ionic liquid 1-methylimidazolium chloride. International Journal of Biological Macromolecules, 2020, 157, 461-469.	7.5	39
59	Organosolv Delignification of Eucalyptus globulus:  Kinetic Study of Autocatalyzed Ethanol Pulping. Industrial & Engineering Chemistry Research, 2000, 39, 34-39.	3.7	37
60	(Liquid+liquid) equilibria in the binary systems (aliphatic, or aromatic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 54	7 Td (hydro 2.0	carbons+1-etł 37
61	Separation of toluene from n-heptane by liquid–liquid extraction using binary mixtures of [bpy][BF4] and [4bmpy][Tf2N] ionic liquids as solvent. Journal of Chemical Thermodynamics, 2012, 53, 119-124.	2.0	37
62	Physical Characterization of an Aromatic Extraction Solvent Formed by [bpy][BF ₄] and [4bmpy][Tf ₂ N] Mixed Ionic Liquids. Journal of Chemical & Engineering Data, 2013, 58, 1496-1504.	1.9	37
63	Thermal stability and specific heats of {[emim][DCA]+[emim][TCM]} mixed ionic liquids. Thermochimica Acta, 2014, 588, 22-27.	2.7	36
64	Non-ideal behavior of ionic liquid mixtures to enhance CO2 capture. Fluid Phase Equilibria, 2017, 450, 175-183.	2.5	36
65	Separation of BTEX from a naphtha feed to ethylene crackers using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Separation and Purification Technology, 2015, 144, 54-62.	7.9	35
66	Experimental screening towards developing ionic liquid-based extractive distillation in the dearomatization of refinery streams. Separation and Purification Technology, 2018, 201, 268-275.	7.9	35
67	Alkylsulfate-based ionic liquids in the liquid–liquid extraction of aromatic hydrocarbons. Journal of Chemical Thermodynamics, 2012, 45, 68-74.	2.0	34
68	Mixing and decomposition behavior of {[4bmpy][Tf2N]+[emim][EtSO4]} and {[4bmpy][Tf2N]+[emim][TFES]} ionic liquid mixtures. Journal of Chemical Thermodynamics, 2015, 82, 58-75.	2.0	34
69	Alkali treatment of viscose cellulosic fibers from eucalyptus wood: Structural, morphological, and thermal analysis. Journal of Applied Polymer Science, 2013, 130, 2198-2204.	2.6	33
70	Liquid–Liquid Extraction of Toluene from <i>n</i> -Alkanes using {[4empy][Tf ₂ N] + [emim][DCA]} lonic Liquid Mixtures. Journal of Chemical & Engineering Data, 2014, 59, 1692-1699.	1.9	33
71	Dearomatization of pyrolysis gasolines from mild and severe cracking by liquid–liquid extraction using a binary mixture of [4empy][Tf2N] and [emim][DCA] ionic liquids. Fuel Processing Technology, 2015, 137, 269-282.	7.2	33
72	Recovery of tyrosol from aqueous streams using hydrophobic ionic liquids: a first step towards developing sustainable processes for olive mill wastewater (OMW) management. RSC Advances, 2016, 6, 18751-18762.	3.6	33

#	Article	IF	CITATIONS
73	Selective recovery of aliphatics from aromatics in the presence of the {[4empy][Tf 2 N] + [emim][DCA]} ionic liquid mixture. Journal of Chemical Thermodynamics, 2016, 96, 134-142.	2.0	33
74	Combining autohydrolysis and ionic liquid microwave treatment to enhance enzymatic hydrolysis of Eucalyptus globulus wood. Bioresource Technology, 2018, 251, 197-203.	9.6	32
75	Cellulose ionogels, a perspective of the last decade: A review. Carbohydrate Polymers, 2021, 274, 118663.	10.2	32
76	Extraction of aromatic hydrocarbons from pyrolysis gasoline using tetrathiocyanatocobaltate-based ionic liquids: Experimental study and simulation. Fuel Processing Technology, 2017, 159, 96-110.	7.2	30
77	Lignin Behavior During the Autocatalyzed Methanol Pulping of Eucalyptus globulus Changes in Molecular Weight and Functionality. Holzforschung, 2000, 54, 373-380.	1.9	29
78	Toluene/ <i>n</i> -Heptane Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids: Experimental and CPA EoS Modeling. Industrial & Engineering Chemistry Research, 2018, 57, 14242-14253.	3.7	29
79	Effect of autohydrolysis on Pinus radiata wood for hemicellulose extraction. Carbohydrate Polymers, 2018, 194, 285-293.	10.2	28
80	Dearomatization of pyrolysis gasoline by extractive distillation with 1-ethyl-3-methylimidazolium tricyanomethanide. Fuel Processing Technology, 2019, 195, 106156.	7.2	28
81	Chitosan-reinforced cellulosic bionogels: Viscoelastic and antibacterial properties. Carbohydrate Polymers, 2020, 229, 115569.	10.2	28
82	Kinetics ofEucalyptus globulusDelignification in a Methanolâ^'Water Medium. Industrial & Engineering Chemistry Research, 1999, 38, 3324-3332.	3.7	26
83	Cyclohexane/cyclohexene separation by extractive distillation with cyano-based ionic liquids. Journal of Molecular Liquids, 2019, 289, 111120.	4.9	26
84	Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cyclohexene separation by liquid-liquid extraction. Journal of Chemical Thermodynamics, 2019, 131, 340-346.	2.0	26
85	Ecotoxicity evaluation towards Vibrio fischeri of imidazolium- and pyridinium-based ionic liquids for their use in separation processes. SN Applied Sciences, 2019, 1, 1.	2.9	25
86	Quantification of adulterant agents in extra virgin olive oil by models based on its thermophysical properties. Journal of Food Engineering, 2011, 103, 211-218.	5.2	24
87	Extraction of benzene, ethylbenzene, and xylenes from n-heptane using binary mixtures of [4empy][Tf2N] and [emim][DCA] ionic liquids. Fluid Phase Equilibria, 2014, 380, 1-10.	2.5	24
88	Extraction and recovery process to selectively separate aromatics from naphtha feed to ethylene crackers using 1-ethyl-3-methylimidazolium thiocyanate ionic liquid. Chemical Engineering Research and Design, 2017, 120, 102-112.	5.6	24
89	Design of the Hydrocarbon Recovery Section from the Extract Stream of the Aromatic Separation from Reformer and Pyrolysis Gasolines Using a Binary Mixture of [4empy][Tf ₂ N] + [emim][DCA] Ionic Liquids. Energy & Fuels, 2017, 31, 1035-1043.	5.1	24
90	Determination of 1-Ethyl-3-methylimidazolium Ethylsulfate Ionic Liquid and Toluene Concentration in Aqueous Solutions by Artificial Neural Network/UV Spectroscopy. Industrial & Engineering Chemistry Research, 2007, 46, 3787-3793.	3.7	23

#	Article	IF	CITATIONS
91	(Liquid+liquid) equilibrium for the ternary systems {heptane+toluene+1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide} and {heptane+toluene+1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide} ionic liquids. Journal of Chemical Thermodynamics, 2011, 43, 1641-1645.	2.0	23
92	Autohydrolysis and microwave ionic liquid pretreatment of Pinus radiata: Imaging visualization and analysis to understand enzymatic digestibility. Industrial Crops and Products, 2019, 134, 328-337.	5.2	22
93	Protic, Aprotic, and Choline-Derived Ionic Liquids: Toward Enhancing the Accessibility of Hardwood and Softwood. ACS Sustainable Chemistry and Engineering, 2020, 8, 1362-1370.	6.7	22
94	Technoeconomic Assessment of a Biomass Pretreatment + Ionic Liquid Recovery Process with Aprotic and Choline Derived Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2021, 9, 8467-8476.	6.7	22
95	Use of selective ionic liquids and ionic liquid/salt mixtures as entrainer in a (vapor + liquid) system to separate n -heptane from toluene. Journal of Chemical Thermodynamics, 2015, 91, 156-164.	2.0	21
96	Prediction of non-ideal behavior of polarity/polarizability scales of solvent mixtures by integration of a novel COSMO-RS molecular descriptor and neural networks. Physical Chemistry Chemical Physics, 2008, 10, 5967.	2.8	20
97	Liquid–liquid extraction of toluene from heptane by {[4bmpy][Tf2N]+[emim][CHF2CF2SO3]} ionic liquid mixed solvents. Fluid Phase Equilibria, 2013, 337, 47-52.	2.5	19
98	Dearomatization of pyrolysis gasoline with an ionic liquid mixture: Experimental study and process simulation. AICHE Journal, 2017, 63, 4054-4065.	3.6	19
99	Vapor-liquid equilibria for n-heptaneÂ+Â(benzene, toluene, p-xylene, or ethylbenzene)Â+Â{[4empy][Tf2N] (0.3)Â+Â[emim][DCA] (0.7)} binary ionic liquid mixture. Fluid Phase Equilibria, 2016, 417, 41-49.	2.5	18
100	New Experimental Data and Modeling of Glymes: Toward the Development of a Predictive Model for Polyethers. Industrial & Engineering Chemistry Research, 2017, 56, 7830-7844.	3.7	18
101	Separation of benzene from methylcycloalkanes by extractive distillation with cyano-based ionic liquids: Experimental and CPA EoS modelling. Separation and Purification Technology, 2020, 234, 116128.	7.9	18
102	Extractive Distillation with Ionic Liquids To Separate Benzene, Toluene, and Xylene from Pyrolysis Gasoline: Process Design and Techno-Economic Comparison with the Morphylane Process. Industrial & Engineering Chemistry Research, 2022, 61, 2511-2523.	3.7	17
103	Optimization of the silane treatment of cellulosic fibers from eucalyptus wood using response surface methodology. Journal of Applied Polymer Science, 2015, 132, .	2.6	16
104	A comparative study of pure ionic liquids and their mixtures as potential mass agents in the separation of hydrocarbons. Journal of Molecular Liquids, 2016, 222, 118-124.	4.9	16
105	Recovery and Reuse of 1-Allyl-3-methylimidazolium Chloride in the Fractionation of <i>Pinus radiata</i> Wood. ACS Sustainable Chemistry and Engineering, 2017, 5, 2384-2392.	6.7	16
106	Tuning the rheological properties of cellulosic ionogels reinforced with chitosan: The role of the deacetylation degree. Carbohydrate Polymers, 2019, 207, 775-781.	10.2	16
107	Novel Process to Reduce Benzene, Thiophene, and Pyrrole in Gasoline Based on [4bmpy][TCM] Ionic Liquid. Energy & Fuels, 2018, 32, 5650-5658.	5.1	15
108	Dissolution of Pinus radiata and Eucalyptus Globulus Woods in 1-Allyl-3-methylimidazolium Chloride for Cellulose or Lignin Regeneration. Industrial & Engineering Chemistry Research, 2013, 52, 3628-3636.	3.7	14

#	Article	IF	CITATIONS
109	Thermal stability and specific heats of {[bpy][BF4]Â+Â[bpy][Tf2N]} and {[bpy][BF4]Â+Â[4bmpy][Tf2N]} mixed ionic liquid solvents. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1235-1243.	3.6	14
110	Vapor–Liquid Equilibria for (n-Hexane, n-Octane, Cyclohexane, or 2,3-Dimethylpentane) + Toluene + {[4empy][Tf2N] (0.3) + [emim][DCA] (0.7)} Mixed Ionic Liquids. Journal of Chemical & Engineering Data, 2016, 61, 2440-2449.	1.9	14
111	Thermal and kinetics of the degradation of chitosan with different deacetylation degrees under oxidizing atmosphere. Thermochimica Acta, 2018, 670, 18-26.	2.7	14
112	Modelling solubility of solids in supercritical fluids using response surface methodology. Journal of Chemical Technology and Biotechnology, 2000, 75, 245-251.	3.2	13
113	On the volatility of aromatic hydrocarbons in ionic liquids: Vapor-liquid equilibrium measurements and theoretical analysis. Journal of Molecular Liquids, 2018, 250, 9-18.	4.9	13
114	Twoâ€step fractionation of <i>Pinus radiata</i> by autohydrolysis and organosolv delignification for enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2019, 94, 3951-3959.	3.2	13
115	Viscoelastic properties of physical cellulosic bionogels of cholinium lysinate. International Journal of Biological Macromolecules, 2019, 133, 262-269.	7.5	13
116	Self-Organizing Maps and Learning Vector Quantization Networks As Tools to Identify Vegetable Oils. Journal of Agricultural and Food Chemistry, 2009, 57, 2763-2769.	5.2	12
117	Mechanical and interfacial properties of phenolic composites reinforced with treated cellulose fibers. Polymer Engineering and Science, 2014, 54, 2228-2238.	3.1	12
118	A biorefinery strategy for the manufacture and characterization of oligosaccharides and antioxidants from poplar hemicelluloses. Food and Bioproducts Processing, 2020, 123, 398-408.	3.6	12
119	Application of lag-k autocorrelation coefficient and the TGA signals approach to detecting and quantifying adulterations of extra virgin olive oil with inferior edible oils. Analytica Chimica Acta, 2011, 688, 140-145.	5.4	11
120	Separation of Toluene and Heptane by Liquid–Liquid Extraction Using Binary Mixtures of the Ionic Liquids 1-Butyl-4-methylpyridinium Bis(trifluoromethylsulfonyl)imide and 1-Ethyl-3-methylimidazolium Ethylsulfate. Journal of Chemical & Engineering Data, 2012, 57, 2472-2478.	1.9	11
121	Vapor–Liquid Equilibria of <i>n</i> -Heptane + Toluene +1-Ethyl-4-methylpyridinium Bis(trifluoromethylsulfonyl)imide Ionic Liquid. Journal of Chemical & Engineering Data, 2016, 61, 458-465.	1.9	11
122	Toward Modeling the Aromatic/Aliphatic Separation by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids Using CPA EoS. Industrial & Engineering Chemistry Research, 2019, 58, 19681-19692.	3.7	11
123	Kraft Pulping ofEucalyptusglobulus:Â Kinetics of Residual Delignification. Industrial & Engineering Chemistry Research, 2002, 41, 1955-1959.	3.7	10
124	Chaotic parameters and their role in quantifying noise in the output signals from UV, TGA and DSC apparatus. Talanta, 2009, 79, 665-668.	5.5	10
125	Application of microscopy techniques for a better understanding of biomass pretreatment. Industrial Crops and Products, 2019, 138, 111466.	5.2	8
126	Impact of water on the [C4C1im][Ac] ability for the CO2/CH4 separation. Journal of CO2 Utilization, 2019, 31, 115-123.	6.8	8

#	Article	IF	CITATIONS
127	Experimental and CPA EoS Description of the Key Components in the BTX Separation from Gasolines by Extractive Distillation with Tricyanomethanide-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2020, 59, 15058-15068.	3.7	8
128	Thermal degradation kinetics of a lignin particle-reinforced phenolic foam. Journal of Cellular Plastics, 2021, 57, 176-192.	2.4	8
129	Organosolv and ionosolv processes for autohydrolyzed poplar fractionation: Lignin recovery and characterization. International Journal of Biological Macromolecules, 2022, 197, 131-140.	7.5	8
130	Refining Heavy Neutral Oil Paraffin by Catalytic Hydrotreatment over Niâ^'W/Al2O3Catalysts. Energy & Fuels, 2006, 20, 245-249.	5.1	7
131	Determination of Toluene, <i>n-</i> Heptane, [emim][EtSO ₄], and [bmim][MeSO ₄] Ionic Liquids Concentrations in Quaternary Mixtures by UVâ^'vis Spectroscopy. Industrial & Engineering Chemistry Research, 2009, 48, 4998-5003.	3.7	7
132	Aliphatic and aromatic hydrocarbon diffusion coefficients at infinite dilution in [emim][DCA] and [4empy][Tf2N] ionic liquids. Journal of Molecular Liquids, 2019, 288, 111082.	4.9	5
133	Insights into Ionic Liquid/Aromatic Systems from NMR Spectroscopy: How Water Affects Solubility and Intermolecular Interactions. ChemPlusChem, 2019, 84, 872-881.	2.8	5
134	Tetrathiocyanatocobaltate and bis(trifluoromethylsulfonyl)imide-based ionic liquids as mass agents in the separation of cyclohexane and cyclohexene mixtures by homogeneous extractive distillation. Journal of Chemical Thermodynamics, 2021, 157, 106403.	2.0	5
135	Experimental screening of ionic liquids as mass agents in the n-hexane/1-hexene extractive distillation. Fluid Phase Equilibria, 2021, 549, 113205.	2.5	5
136	A new approach for the use of cellulose-rich solids from biorefinery in the formulation of gel-like materials. Industrial Crops and Products, 2022, 186, 115230.	5.2	5
137	High pressure density of tricyanomethanide-based ionic liquids: Experimental and PC-SAFT modelling. Fluid Phase Equilibria, 2020, 520, 112652.	2.5	4
138	Kinetics of anthraquinone reduction with sodium dithionite in alkaline medium. AICHE Journal, 1988, 34, 865-869.	3.6	3
139	Kinetics of anthraquinone reduction with sodium sulfide in alkaline medium. Industrial & Engineering Chemistry Research, 1991, 30, 1791-1795.	3.7	3
140	Design and optimisation of a filter based on neural networks. Application to reduce noise in experimental measurement by TGA of thermal degradation of 1-ethyl-3-methylimidazolium ethylsulfate ionic liquid. Sensors and Actuators B: Chemical, 2008, 133, 426-434.	7.8	3
141	Catalytic Hydrotreatment of Crude Waxes from Different Sources over a Niâ°'W/-Al ₂ O ₃ Catalyst. Industrial & Engineering Chemistry Research, 2008, 47, 6854-6861.	3.7	3
142	High-Pressure Density of Bis(1-alkyl-3-methylimidazolium) Tetraisothiocyanatocobaltate Ionic Liquids: Experimental and PC-SAFT with Volume-Shift Modeling. Journal of Chemical & Engineering Data, 2019, 64, 4827-4833.	1.9	3
143	Fractionation of Pinus radiata by ethanol-based organosolv process. Biomass Conversion and Biorefinery, 2024, 14, 451-464.	4.6	3
144	Developing a new correlation for the aliphatic and aromatic hydrocarbon diffusion coefficients at infinite dilution in ionic liquids. Journal of Molecular Liquids, 2019, 296, 111857.	4.9	2

#	Article	IF	CITATIONS
145	Modelling of Hydrocarbon Solubility in Isomeric Ionic Liquids Using Mathematical Regressions. Separation Science and Technology, 2012, 47, 392-398.	2.5	0