Yu-Wei Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457780/publications.pdf

Version: 2024-02-01

58	1,070	19	31
papers	citations	h-index	g-index
58	58	58	269
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An improved high-efficiency relativistic magnetron with a novel cathode endcap. AIP Advances, 2021, 11 , .	1.3	4
2	Experimental Demonstration of a Ridged Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1698-1702.	4.6	6
3	Experimental Generation of 1.1-kA Gyrating Electron Beam Current From an Explosive Emission Cathode Magnetron Injection Gun. IEEE Transactions on Electron Devices, 2021, 68, 4664-4668.	3.0	3
4	DesignÂof a tunable turnstile mode converter for high-power microwave applications. Review of Scientific Instruments, 2021, 92, 104708.	1.3	О
5	A High-Efficiency Ridged Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Electron Devices, 2020, 67, 4442-4446.	3.0	5
6	Design and Simulation of a Novel High-Efficiency Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2020, 48, 884-887.	1.3	5
7	A high-efficiency relativistic magnetron with a novel all-cavity extraction structure. AIP Advances, 2020, 10, .	1.3	9
8	Progress in narrowband high-power microwave sources. Physics of Plasmas, 2020, 27, .	1.9	46
9	Improvement of vacuum maintenance capability and output pulse limit in a hard-tube MILO with a carbon fiber array cathode. Vacuum, 2020, 181, 109723.	3 . 5	2
10	A compact dual-band radiation system. Chinese Physics B, 2020, 29, 118402.	1.4	2
11	A High-Efficiency Magnetically Insulated Transmission Line Oscillator With Ridged Disk-Loaded Vanes. IEEE Transactions on Plasma Science, 2019, 47, 3974-3977.	1.3	9
12	Influence of voltage rise time on operation frequency in magnetically insulated transmission line oscillator. Review of Scientific Instruments, 2019, 90, 044704.	1.3	2
13	Performance improvement of a magnetically insulated transmission line oscillator with a carbon fiber array cathode. Review of Scientific Instruments, 2019, 90, 044703.	1.3	О
14	An <inline-formula> <tex-math notation="LaTeX">\$L\$ </tex-math> </inline-formula> -Band Relativistic Magnetron With Cathode Priming. IEEE Transactions on Plasma Science, 2019, 47, 204-208.	1.3	6
15	A low-outgassing-rate carbon fiber array cathode. Chinese Physics B, 2018, 27, 028401.	1.4	3
16	Compact intense electron-beam accelerators based on high energy density liquid pulse forming lines. Matter and Radiation at Extremes, 2018, 3, 278-292.	3.9	16
17	Tunable circularly-polarized turnstile-junction mode converter for high-power microwave applications. Chinese Physics B, 2018, 27, 068401.	1.4	11
18	Design of a dual-band radiation system for a complex magnetically insulated line oscillator. AIP Advances, 2018, 8, 055212.	1.3	8

#	Article	IF	Citations
19	A high-efficiency tunable TEM-TE11 mode converter for high-power microwave applications. AIP Advances, 2017, 7, .	1.3	12
20	Performance testing of a carbon fiber array cathode in a hard-tube MILO. Journal of Applied Physics, 2017, 122, .	2.5	5
21	Outgassing rate analysis of a velvet cathode and a carbon fiber cathode. Journal of Applied Physics, 2017, 122, .	2.5	4
22	A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source. Journal of Applied Physics, 2017, 121, .	2.5	5
23	Preliminary experimental study of a carbon fiber array cathode. Journal of Applied Physics, 2016, 120, .	2.5	14
24	Theoretical investigation of the dielectric-filled relativistic magnetron. Physics of Plasmas, 2016, 23, .	1.9	5
25	A high-efficiency relativistic magnetron with the filled dielectric. Physics of Plasmas, 2016, 23, .	1.9	8
26	Research progresses on Cherenkov and transit-time high-power microwave sources at NUDT. Matter and Radiation at Extremes, 2016, 1 , $163-178$.	3.9	65
27	A high-efficiency repetitively pulsed magnetically insulated transmission line oscillator. Vacuum, 2016, 128, 39-44.	3.5	22
28	Experimental Demonstration of a Tunable Load-Limited Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Electron Devices, 2016, 63, 1307-1311.	3.0	26
29	Simulational Investigation of a High-Efficiency X-Band Magnetically Insulated Line Oscillator. Plasma Science and Technology, 2015, 17, 893-896.	1.5	5
30	A tunable magnetically insulated transmission line oscillator. Chinese Physics B, 2015, 24, 035203.	1.4	22
31	A tunable magnetically insulated transmission line oscillator. , 2015, , .		0
32	Simulation investigation of a high-efficiency X-band magnetically insulated line oscillator., 2015,,.		0
33	Preliminary investigation of an improved metal-dielectric cathode for magnetically insulated transmission line oscillator. Review of Scientific Instruments, 2015, 86, 024705.	1.3	8
34	A dielectric-filled magnetically insulated transmission line oscillator. Applied Physics Letters, 2015, 106, 093501.	3.3	19
35	A long-pulse repetitive operation magnetically insulated transmission line oscillator. Review of Scientific Instruments, 2014, 85, 053512.	1.3	23
36	Time-and-space resolved comparison of plasma expansion velocities in high-power diodes with velvet cathodes. Journal of Applied Physics, 2013, 113, .	2.5	19

#	Article	IF	CITATIONS
37	Design and experiment of a cross-shaped mode converter for high-power microwave applications. Review of Scientific Instruments, 2013, 84, 124703.	1.3	34
38	Time evolution of the two-dimensional expansion velocity distributions of the cathode plasma in pulsed high-power diodes. Laser and Particle Beams, 2013, 31, 129-134.	1.0	17
39	Experimental demonstration of a compact high efficient relativistic magnetron with directly axial radiation. Physics of Plasmas, 2012, 19 , .	1.9	23
40	Time-Resolved Plasma Characteristics in a Short-Pulse High-Power Diode With a Dielectric Fiber (Velvet) Cathode. IEEE Transactions on Plasma Science, 2012, 40, 1696-1700.	1.3	9
41	Investigation of a 1.2-GHz Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2011, 39, 540-544.	1.3	37
42	Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field. Physics of Plasmas, $2011,18,18$	1.9	34
43	An L-band coaxial relativistic backward wave oscillator with mechanical frequency tunability. Applied Physics Letters, 2010, 97, .	3.3	73
44	Dispersive characteristics and longitudinal resonance properties in a relativistic backward wave oscillator with the coaxial arbitrary-profile slow-wave structure. Physics of Plasmas, 2009, 16, 113104.	1.9	17
45	Characteristics of a velvet cathode under high repetition rate pulse operation. Physics of Plasmas, 2009, 16, 103106.	1.9	12
46	An improved X-band magnetically insulated transmission line oscillator. Physics of Plasmas, 2009, 16, .	1.9	15
47	A Novel Dual-Frequency Magnetically Insulated Transmission Line Oscillator. IEEE Transactions on Plasma Science, 2009, 37, 2041-2047.	1.3	29
48	Theoretical investigation of the fundamental mode frequency of A6 magnetron. Journal of Applied Physics, 2009, 105, 083310.	2.5	20
49	Use of shorted coaxial transmission line for high-power microwave measurement. Review of Scientific Instruments, 2009, 80, 024701.	1.3	4
50	Repetition rate operation of an improved magnetically insulated transmission line oscillator. Physics of Plasmas, 2008, 15, 083102.	1.9	47
51	Complex magnetically insulated transmission line oscillator. Physics of Plasmas, 2008, 15, 083108.	1.9	22
52	Recent progress of the improved magnetically insulated transmission line oscillator. Review of Scientific Instruments, 2008, 79, 034703.	1.3	51
53	Analysis and improvement of an X-band magnetically insulated transmission line oscillator. Journal of Applied Physics, 2008, 103, .	2.5	51
54	A metal-dielectric cathode. Journal of Applied Physics, 2008, 104, 023304.	2.5	19

Yu-Wei Fan

#	Article	IF	CITATION
55	Theoretical investigation of the fundamental mode frequency of the magnetically insulated transmission line oscillator. Physics of Plasmas, 2008, 15, .	1.9	15
56	A double-band high-power microwave source. Journal of Applied Physics, 2007, 102, .	2.5	48
57	Experimental Investigation of an Improved MILO. IEEE Transactions on Plasma Science, 2007, 35, 1075-1080.	1.3	48
58	Simulation Investigation of an Improved MILO. IEEE Transactions on Plasma Science, 2007, 35, 379-383.	1.3	46