
Alfonso Mora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myeloid p38 activation maintains macrophage–liver crosstalk and BAT thermogenesis through ILâ€12–FGF21 axis. Hepatology, 2023, 77, 874-887.	7.3	3
2	Methionine adenosyltransferase 1a antisense oligonucleotides activate the liver-brown adipose tissue axis preventing obesity and associated hepatosteatosis. Nature Communications, 2022, 13, 1096.	12.8	22
3	Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Molecular Metabolism, 2021, 50, 101190.	6.5	25
4	Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity, 2021, 54, 2578-2594.e5.	14.3	32
5	p38γ and p38δ regulate postnatal cardiac metabolism through glycogen synthase 1. PLoS Biology, 2021, 19, e3001447.	5.6	8
6	Cell identity and nucleo-mitochondrial genetic context modulate OXPHOS performance and determine somatic heteroplasmy dynamics. Science Advances, 2020, 6, eaba5345.	10.3	31
7	JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16492-16499.	7.1	43
8	Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. ELife, 2020, 9, .	6.0	26
9	p38Î ³ is essential for cell cycle progression and liver tumorigenesis. Nature, 2019, 568, 557-560.	27.8	72
10	Adiponectin accounts for gender differences in hepatocellular carcinoma incidence. Journal of Experimental Medicine, 2019, 216, 1108-1119.	8.5	63
11	p107 Deficiency Increases Energy Expenditure by Inducing Brownâ€Fat Thermogenesis and Browning of White Adipose Tissue. Molecular Nutrition and Food Research, 2019, 63, e1801096.	3.3	7
12	Pharmacological stimulation of p53 with low-dose doxorubicin ameliorates diet-induced nonalcoholic steatosis and steatohepatitis. Molecular Metabolism, 2018, 8, 132-143.	6.5	28
13	p38αÂblocks brown adipose tissue thermogenesis through p38δÂinhibition. PLoS Biology, 2018, 16, e2004455.	5.6	30
14	MKK6 controls T3-mediated browning of white adipose tissue. Nature Communications, 2017, 8, 856.	12.8	54
15	p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO Journal, 2016, 35, 536-552.	7.8	61
16	CD14 Deficiency Impacts Glucose Homeostasis in Mice through Altered Adrenal Tone. PLoS ONE, 2012, 7, e29688.	2.5	15
17	Role of the hypothalamic–pituitary–thyroid axis in metabolic regulation by JNK1. Genes and Development, 2010, 24, 256-264.	5.9	103
18	Prevention of Steatosis by Hepatic JNK1. Cell Metabolism, 2009, 10, 491-498.	16.2	130

ALFONSO MORA

#	Article	IF	CITATIONS
19	A Stress Signaling Pathway in Adipose Tissue Regulates Hepatic Insulin Resistance. Science, 2008, 322, 1539-1543.	12.6	506
20	Deficiency of PDK1 in liver results in glucose intolerance, impairment of insulin-regulated gene expression and liver failure. Biochemical Journal, 2005, 385, 639-648.	3.7	84
21	Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13058-13063.	7.1	164
22	Role of the PDK1-PKB-GSK3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Letters, 2005, 579, 3632-3638.	2.8	80
23	PDK1, the master regulator of AGC kinase signal transduction. Seminars in Cell and Developmental Biology, 2004, 15, 161-170.	5.0	715
24	Identification of filamin C as a new physiological substrate of PKBα using KESTREL. Biochemical Journal, 2004, 384, 489-494.	3.7	41
25	Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO Journal, 2003, 22, 4666-4676.	7.8	166
26	Lithium blocks the PKB and GSK3 dephosphorylation induced by ceramide through protein phosphatase-2A. Cellular Signalling, 2002, 14, 557-562.	3.6	94
27	Different dependence of lithium and valproate on PI3K/PKB pathway. Bipolar Disorders, 2002, 4, 195-200.	1.9	25
28	Essential role of PDK1 in regulating cell size and development in mice. EMBO Journal, 2002, 21, 3728-3738.	7.8	282
29	Mechanisms of MPP + incorporation into cerebellar granule cells. Brain Research Bulletin, 2001, 56, 119-123.	3.0	25
30	Glu-256 is a main structural determinant for oligomerisation of human arginase I. FEBS Letters, 2001, 501, 161-165.	2.8	18
31	Lithium inhibits caspase 3 activation and dephosphorylation of PKB and GSK3 induced by K+ deprivation in cerebellar granule cells. Journal of Neurochemistry, 2001, 78, 199-206.	3.9	87
32	Implications of the S-shaped domain in the quaternary structure of human arginase. BBA - Proteins and Proteomics, 2000, 1476, 181-190.	2.1	18
33	Different mechanisms of protection against apoptosis by valproate and Li+. FEBS Journal, 1999, 266, 886-891.	0.2	90
34	Partial lithium-associated protection against apoptosis induced by C2-ceramide in cerebellar granule neurons. NeuroReport, 1998, 9, 4199-4203.	1.2	57