William J Janssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased histone-DNA complexes and endothelial-dependent thrombin generation in severe COVID-19. Vascular Pharmacology, 2022, 142, 106950.	1.0	13
2	Excess neuropeptides in lung signal through endothelial cells to impair gas exchange. Developmental Cell, 2022, 57, 839-853.e6.	3.1	14
3	SARS-CoV-2 infection relaxes peripheral B cell tolerance. Journal of Experimental Medicine, 2022, 219, .	4.2	10
4	Isolation and Analysis of Macrophage Subsets from the Mouse and Human Lung. Methods in Molecular Biology, 2022, , 257-267.	0.4	1
5	Airspace Macrophages and Monocytes Exist in Transcriptionally Distinct Subsets in Healthy Adults. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 946-956.	2.5	63
6	Disulfide disruption reverses mucus dysfunction in allergic airway disease. Nature Communications, 2021, 12, 249.	5.8	36
7	Air-Inflation of Murine Lungs with Vascular Perfusion-Fixation. Journal of Visualized Experiments, 2021, , .	0.2	Ο
8	Interstitial macrophage-derived thrombospondin-1 contributes to hypoxia-induced pulmonary hypertension. Cardiovascular Research, 2020, 116, 2021-2030.	1.8	34
9	Human and Mouse Transcriptome Profiling Identifies Cross-Species Homology in Pulmonary and Lymph Node Mononuclear Phagocytes. Cell Reports, 2020, 33, 108337.	2.9	38
10	NF-κB mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages. Journal of Biological Chemistry, 2020, 295, 6236-6248.	1.6	13
11	Localization of Macrophages in the Human Lung via Design-based Stereology. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 1209-1217.	2.5	44
12	Cholesterol-25-hydroxylase promotes efferocytosis and resolution of lung inflammation. JCI Insight, 2020, 5, .	2.3	35
13	Inflammation-Induced Alternative Pre-mRNA Splicing in Mouse Alveolar Macrophages. G3: Genes, Genomes, Genetics, 2020, 10, 555-567.	0.8	17
14	Improving the Quality and Reproducibility of Flow Cytometry in the Lung. An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 150-161.	1.4	49
15	Redistribution of ECâ€5OD resolves bleomycinâ€induced inflammation <i>via</i> increased apoptosis of recruited alveolar macrophages. FASEB Journal, 2019, 33, 13465-13475.	0.2	14
16	Inflammation via myeloid differentiation primary response gene 88 signaling mediates the fibrotic response to implantable synthetic poly(ethylene glycol) hydrogels. Acta Biomaterialia, 2019, 100, 105-117.	4.1	25
17	Cholestenoic acid is a prognostic biomarker in acute respiratory distress syndrome. Journal of Allergy and Clinical Immunology, 2019, 143, 440-442.e8.	1.5	4
18	Single cell RNA sequencing identifies unique inflammatory airspace macrophage subsets. JCI Insight, 2019, 4, .	2.3	167

WILLIAM J JANSSEN

#	Article	IF	CITATIONS
19	Deletion of c-FLIP from CD11b ^{hi} Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 66-78.	1.4	128
20	Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 314, L69-L82.	1.3	57
21	Mucociliary Defense: Emerging Cellular, Molecular, and Animal Models. Annals of the American Thoracic Society, 2018, 15, S210-S215.	1.5	23
22	Recombinant IFN-β for Postseptic Acute Lung Injury—What's the Mechanism?. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 1-2.	1.4	5
23	Rapid clearance of heavy chain-modified hyaluronan during resolving acute lung injury. Respiratory Research, 2018, 19, 107.	1.4	19
24	IL-13 induces periostin and eotaxin expression in human primary alveolar epithelial cells: Comparison with paired airway epithelial cells. PLoS ONE, 2018, 13, e0196256.	1.1	17
25	Modulation of Myeloid Cell Function Using Conditional and Inducible Transgenic Approaches. Methods in Molecular Biology, 2018, 1809, 145-168.	0.4	0
26	Mouse Models of Viral Infection. Methods in Molecular Biology, 2018, 1809, 395-414.	0.4	5
27	CD73 regulates anti-inflammatory signaling between apoptotic cells and endotoxin-conditioned tissue macrophages. Cell Death and Differentiation, 2017, 24, 559-570.	5.0	45
28	Dual RNA-seq reveals viral infections in asthmatic children without respiratory illness which are associated with changes in the airway transcriptome. Genome Biology, 2017, 18, 12.	3.8	59
29	Three Unique Interstitial Macrophages in the Murine Lung at Steady State. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 66-76.	1.4	350
30	Cell Origin Dictates Programming of Resident versus Recruited Macrophages during Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 294-306.	1.4	139
31	A Time- and Compartment-Specific Activation of Lung Macrophages in Hypoxic Pulmonary Hypertension. Journal of Immunology, 2017, 198, 4802-4812.	0.4	66
32	TGF-β activation by bone marrow-derived thrombospondin-1 causes Schistosoma- and hypoxia-induced pulmonary hypertension. Nature Communications, 2017, 8, 15494.	5.8	102
33	Neutrophil transfer of <i>miR-223</i> to lung epithelial cells dampens acute lung injury in mice. Science Translational Medicine, 2017, 9, .	5.8	162
34	Promoter Specificity and Efficacy in Conditional and Inducible Transgenic Targeting of Lung Macrophages. Frontiers in Immunology, 2017, 8, 1618.	2.2	78
35	Power of Place: Intravascular Superoxide Dismutase for Prevention of Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 147-149.	1.4	2
36	Power of Place: Intravascular Superoxide Dismutase for Prevention of Acute Respiratory Distress Syndrome. American Journal of Respiratory Cell and Molecular Biology, 2017, 56, 147-149.	1.4	3

#	Article	IF	CITATIONS
37	Selective and inducible targeting of CD11b+mononuclear phagocytes in the murine lung with hCD68-rtTA transgenic systems. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L87-L100.	1.3	15
38	Scratching Below the Surface. New England Journal of Medicine, 2016, 375, 2188-2193.	13.9	1
39	Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. European Respiratory Journal, 2016, 48, 1201-1214.	3.1	64
40	MicroRNA-34a Negatively Regulates Efferocytosis by Tissue Macrophages in Part via SIRT1. Journal of Immunology, 2016, 196, 1366-1375.	0.4	35
41	Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 614-626.	2.5	137
42	Transcriptome analysis highlights the conserved difference between embryonic and postnatal-derived alveolar macrophages. Blood, 2015, 126, 1357-1366.	0.6	191
43	Tracheal Dysplasia Precedes Bronchial Dysplasia in Mouse Model of N-Nitroso Trischloroethylurea Induced Squamous Cell Lung Cancer. PLoS ONE, 2015, 10, e0122823.	1.1	18
44	Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. Journal of Allergy and Clinical Immunology, 2015, 135, 1329-1340.e9.	1.5	72
45	The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nature Communications, 2015, 6, 6281.	5.8	223
46	The Causal Role of IL-4 and IL-13 in <i>Schistosoma mansoni</i> Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 998-1008.	2.5	71
47	Kinetics of the angiogenic response in lung endothelium following acute inflammatory injury with bleomycin. Experimental Lung Research, 2014, 40, 415-425.	0.5	4
48	Fas ligand-expressing lymphocytes enhance alveolar macrophage apoptosis in the resolution of acute pulmonary inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L62-L70.	1.3	18
49	Muc5b is required for airway defence. Nature, 2014, 505, 412-416.	13.7	617
50	Dendritic cell subsets require cis-activation for cytotoxic CD8 T-cell induction. Nature Communications, 2014, 5, 4674.	5.8	105
51	Protein Tyrosine Phosphatase α Mediates Profibrotic Signaling in Lung Fibroblasts through TGF-β Responsiveness. American Journal of Pathology, 2014, 184, 1489-1502.	1.9	31
52	Circulating Hematopoietic Progenitor Cells are Decreased in COPD. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2013, 11, 131101114106009.	0.7	20
53	Endothelial glycocalyx degradation predisposes for transfusionâ€associated acute lung injury. FASEB Journal, 2013, 27, 724.1.	0.2	1
54	Increased Lymphatic Vessel Length Is Associated With the Fibroblast Reticulum and Disease Severity in Usual Interstitial Pneumonia and Nonspecific Interstitial Pneumonia. Chest, 2012, 142, 1569-1576.	0.4	26

WILLIAM J JANSSEN

#	Article	IF	CITATIONS
55	Cellular Regulation of the Inflammatory Response. Toxicologic Pathology, 2012, 40, 166-173.	0.9	40
56	The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nature Medicine, 2012, 18, 1217-1223.	15.2	631
57	Fas Determines Differential Fates of Resident and Recruited Macrophages during Resolution of Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 547-560.	2.5	278
58	Development and characterization of a lung-protective method of bone marrow transplantation in the mouse. Journal of Immunological Methods, 2010, 357, 1-9.	0.6	17
59	TNFα inhibits apoptotic cell clearance in the lung, exacerbating acute inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 297, L586-L595.	1.3	45
60	Cigarette Smoke Impairs Clearance of Apoptotic Cells through Oxidant-dependent Activation of RhoA. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 1011-1021.	2.5	143
61	Acute Exacerbations of Fibrotic Hypersensitivity Pneumonitis. Chest, 2008, 134, 844-850.	0.4	84
62	Dyspnea, Chest Pain, and Altered Mental Status in a 33-Year-Old Carpenter. Chest, 2008, 134, 1074-1079.	0.4	2
63	Surfactant Proteins A and D Suppress Alveolar Macrophage Phagocytosis via Interaction with SIRPα. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 158-167.	2.5	181
64	Stridor in a 47-Year-Old Man With Inflammatory Bowel Disease. Chest, 2006, 129, 1100-1106.	0.4	27
65	Lovastatin Enhances Clearance of Apoptotic Cells (Efferocytosis) with Implications for Chronic Obstructive Pulmonary Disease. Journal of Immunology, 2006, 176, 7657-7665.	0.4	200
66	Persistent Radiographic Infiltrates in a Patient With Chronic Cough. Chest, 2005, 128, 1878-1881.	0.4	1
67	A Perfect Storm. New England Journal of Medicine, 2005, 353, 1956-1961.	13.9	3
68	Why "Why―Matters. New England Journal of Medicine, 2004, 351, 2429-2434.	13.9	20