Joel D Baines

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457359/publications.pdf

Version: 2024-02-01

		87723	106150
68	4,445	38	65
papers	citations	h-index	g-index
110	110	110	2384
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	ICP22 of Herpes Simplex Virus 1 Decreases RNA Polymerase Processivity. Journal of Virology, 2022, 96, jvi0219121.	1.5	8
2	RNA Polymerase II Promoter-Proximal Pausing and Release to Elongation Are Key Steps Regulating Herpes Simplex Virus 1 Transcription. Journal of Virology, 2020, 94, .	1.5	21
3	The Coxsackievirus and Adenovirus Receptor, a Required Host Factor for Recovirus Infection, Is a Putative Enteric Calicivirus Receptor. Journal of Virology, 2019, 93, .	1.5	16
4	Herpes Simplex Virus 1 Dramatically Alters Loading and Positioning of RNA Polymerase II on Host Genes Early in Infection. Journal of Virology, 2018, 92, .	1.5	51
5	Broad anti-herpesviral activity of α-hydroxytropolones. Veterinary Microbiology, 2018, 214, 125-131.	0.8	14
6	Clinical management of herpes simplex virus infections: past, present, and future. F1000Research, 2018, 7, 1726.	0.8	107
7	The HIV Integrase Inhibitor Raltegravir Inhibits Felid Alphaherpesvirus 1 Replication by Targeting both DNA Replication and Late Gene Expression. Journal of Virology, 2018, 92, .	1.5	1
8	Vertex-Specific Proteins pUL17 and pUL25 Mechanically Reinforce Herpes Simplex Virus Capsids. Journal of Virology, 2017, 91, .	1.5	32
9	Herpesvirus Nuclear Egress. Advances in Anatomy, Embryology and Cell Biology, 2017, 223, 143-169.	1.0	44
10	A Domain of Herpes Simplex Virus pU $\langle sub \rangle L \langle sub \rangle$ 33 Required To Release Monomeric Viral Genomes from Cleaved Concatemeric DNA. Journal of Virology, 2017, 91, .	1.5	12
11	Herpes Simplex Virus 1 Induces Phosphorylation and Reorganization of Lamin A/C through the γ ₁ 34.5 Protein That Facilitates Nuclear Egress. Journal of Virology, 2016, 90, 10414-10422.	1.5	42
12	Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors. Biochemistry, 2016, 55, 809-819.	1.2	30
13	The Herpes Simplex Virus 1 UL51 Gene Product Has Cell Type-Specific Functions in Cell-to-Cell Spread. Journal of Virology, 2014, 88, 4058-4068.	1.5	46
14	A Mutation in the DNA Polymerase Accessory Factor of Herpes Simplex Virus 1 Restores Viral DNA Replication in the Presence of Raltegravir. Journal of Virology, 2014, 88, 11121-11129.	1.5	17
15	Association of Herpes Simplex Virus pU _L 31 with Capsid Vertices and Components of the Capsid Vertex-Specific Complex. Journal of Virology, 2014, 88, 3815-3825.	1.5	46
16	The Structure of the Herpes Simplex Virus DNA-Packaging Terminase pUL15 Nuclease Domain Suggests an Evolutionary Lineage among Eukaryotic and Prokaryotic Viruses. Journal of Virology, 2013, 87, 7140-7148.	1.5	72
17	A Herpes Simplex Virus Scaffold Peptide That Binds the Portal Vertex Inhibits Early Steps in Viral Replication. Journal of Virology, 2013, 87, 6876-6887.	1.5	6
18	The Herpes Simplex Virus 2 UL21 Protein Is Essential for Virus Propagation. Journal of Virology, 2013, 87, 5904-5915.	1.5	52

#	Article	IF	Citations
19	Deletion of U _L 21 Causes a Delay in the Early Stages of the Herpes Simplex Virus 1 Replication Cycle. Journal of Virology, 2012, 86, 7003-7007.	1.5	25
20	Herpes simplex virus capsid assembly and DNA packaging: a present and future antiviral drug target. Trends in Microbiology, 2011, 19, 606-613.	3.5	77
21	Herpesviruses remodel host membranes for virus egress. Nature Reviews Microbiology, 2011, 9, 382-394.	13.6	408
22	U _L 31 of Herpes Simplex Virus 1 Is Necessary for Optimal NF- \hat{I}^0 B Activation and Expression of Viral Gene Products. Journal of Virology, 2011, 85, 4947-4953.	1.5	30
23	A Mutation in U _L 15 of Herpes Simplex Virus 1 That Reduces Packaging of Cleaved Genomes. Journal of Virology, 2011, 85, 11972-11980.	1.5	17
24	Absence of Tec Family Kinases Interleukin-2 Inducible T cell Kinase (Itk) and Bruton's Tyrosine Kinase (Btk) Severely Impairs FcϵRI-dependent Mast Cell Responses. Journal of Biological Chemistry, 2011, 286, 9503-9513.	1.6	41
25	Selection of HSV capsids for envelopment involves interaction between capsid surface components pU _L 31, pU _L 17, and pU _L 25. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14276-14281.	3.3	78
26	Actin in Herpesvirus Infection. Viruses, 2011, 3, 336-346.	1.5	41
27	The Capsid Protein Encoded by U _L 17 of Herpes Simplex Virus 1 Interacts with Tegument Protein VP13/14. Journal of Virology, 2010, 84, 7642-7650.	1.5	18
28	Myosin Va Enhances Secretion of Herpes Simplex Virus 1 Virions and Cell Surface Expression of Viral Glycoproteins. Journal of Virology, 2010, 84, 9889-9896.	1.5	48
29	The Putative Leucine Zipper of the U _L 6-Encoded Portal Protein of Herpes Simplex Virus 1 Is Necessary for Interaction with pU _L 15 and pU _L 28 and Their Association with Capsids. Journal of Virology, 2009, 83, 4557-4564.	1.5	18
30	Proline and Tyrosine Residues in Scaffold Proteins of Herpes Simplex Virus 1 Critical to the Interaction with Portal Protein and Its Incorporation into Capsids. Journal of Virology, 2009, 83, 8076-8081.	1.5	11
31	Herpesvirus gB-Induced Fusion between the Virion Envelope and Outer Nuclear Membrane during Virus Egress Is Regulated by the Viral US3 Kinase. Journal of Virology, 2009, 83, 3115-3126.	1.5	91
32	Phosphorylation of the U _L 31 Protein of Herpes Simplex Virus 1 by the U _S 3-Encoded Kinase Regulates Localization of the Nuclear Envelopment Complex and Egress of Nucleocapsids. Journal of Virology, 2009, 83, 5181-5191.	1.5	134
33	Tryptophan Residues in the Portal Protein of Herpes Simplex Virus 1 Critical to the Interaction with Scaffold Proteins and Incorporation of the Portal into Capsids. Journal of Virology, 2009, 83, 11726-11733.	1.5	10
34	VP22 of Herpes Simplex Virus 1 Promotes Protein Synthesis at Late Times in Infection and Accumulation of a Subset of Viral mRNAs at Early Times in Infection. Journal of Virology, 2009, 83, 1009-1017.	1.5	40
35	Effects of Major Capsid Proteins, Capsid Assembly, and DNA Cleavage/Packaging on the pU L 17/pU L 25 Complex of Herpes Simplex Virus 1. Journal of Virology, 2009, 83, 12725-12737.	1.5	18
36	The U _L 31 and U _L 34 Gene Products of Herpes Simplex Virus 1 Are Required for Optimal Localization of Viral Glycoproteins D and M to the Inner Nuclear Membranes of Infected Cells. Journal of Virology, 2009, 83, 4800-4809.	1.5	21

#	Article	IF	CITATIONS
37	Effects of Lamin A/C, Lamin B1, and Viral U _S 3 Kinase Activity on Viral Infectivity, Virion Egress, and the Targeting of Herpes Simplex Virus U _L 34-Encoded Protein to the Inner Nuclear Membrane. Journal of Virology, 2008, 82, 8094-8104.	1.5	73
38	Temperature-Sensitive Mutations in the Putative Herpes Simplex Virus Type 1 Terminase Subunits pU $\frac{15000}{1500}$ and pU $\frac{1500}{1500}$ and Interaction with pU $\frac{1500}{1500}$ at the Nonpermissive Temperature. Journal of Virology, 2008, 82, 487-494.	1.5	18
39	Domain within Herpes Simplex Virus 1 Scaffold Proteins Required for Interaction with Portal Protein in Infected Cells and Incorporation of the Portal Vertex into Capsids. Journal of Virology, 2008, 82, 5021-5030.	1.5	20
40	Genetic comparison of human alphaherpesvirus genomes., 2007,, 61-69.		11
41	Putative Terminase Subunits of Herpes Simplex Virus 1 Form a Complex in the Cytoplasm and Interact with Portal Protein in the Nucleus. Journal of Virology, 2007, 81, 6419-6433.	1.5	53
42	U S 3 of Herpes Simplex Virus Type 1 Encodes a Promiscuous Protein Kinase That Phosphorylates and Alters Localization of Lamin A/C in Infected Cells. Journal of Virology, 2007, 81, 6459-6470.	1.5	146
43	Emerin Is Hyperphosphorylated and Redistributed in Herpes Simplex Virus Type 1-Infected Cells in a Manner Dependent on both UL34 and US3. Journal of Virology, 2007, 81, 10792-10803.	1.5	103
44	UL20 Protein Functions Precede and Are Required for the UL11 Functions of Herpes Simplex Virus Type 1 Cytoplasmic Virion Envelopment. Journal of Virology, 2007, 81, 3097-3108.	1.5	41
45	Type I Interferon Production during Herpes Simplex Virus Infection Is Controlled by Cell-Type-Specific Viral Recognition through Toll-Like Receptor 9, the Mitochondrial Antiviral Signaling Protein Pathway, and Novel Recognition Systems. Journal of Virology, 2007, 81, 13315-13324.	1.5	145
46	Glycoprotein M of Herpes Simplex Virus 1 Is Incorporated into Virions during Budding at the Inner Nuclear Membrane. Journal of Virology, 2007, 81, 800-812.	1.5	41
47	Electron Tomography of Nascent Herpes Simplex Virus Virions. Journal of Virology, 2007, 81, 2726-2735.	1.5	31
48	Linker Insertion Mutations in the Herpes Simplex Virus Type 1 UL28 Gene: Effects on UL28 Interaction with UL15 and UL33 and Identification of a Second-Site Mutation in the UL15 Gene That Suppresses a Lethal UL28 Mutation. Journal of Virology, 2006, 80, 12312-12323.	1.5	31
49	Herpes Simplex Virus Type 1 Infection Induces Activation and Recruitment of Protein Kinase C to the Nuclear Membrane and Increased Phosphorylation of Lamin B. Journal of Virology, 2006, 80, 494-504.	1.5	166
50	Herpes Simplex Virus 1 DNA Packaging Proteins Encoded by U L 6, U L 15, U L 17, U L 28, and U L 33 Are Located on the External Surface of the Viral Capsid. Journal of Virology, 2006, 80, 10894-10899.	1.5	39
51	The Putative Terminase Subunit of Herpes Simplex Virus 1 Encoded by U L 28 Is Necessary and Sufficient To Mediate Interaction between pU L 15 and pU L 33. Journal of Virology, 2006, 80, 5733-5739.	1.5	46
52	Characterization of a U L 49-Null Mutant: VP22 of Herpes Simplex Virus Type 1 Facilitates Viral Spread in Cultured Cells and the Mouse Cornea. Journal of Virology, 2006, 80, 8664-8675.	1.5	70
53	Active intranuclear movement of herpesvirus capsids. Nature Cell Biology, 2005, 7, 429-431.	4.6	107
54	Identification of an Essential Domain in the Herpes Simplex Virus 1 UL34 Protein That Is Necessary and Sufficient To Interact with UL31 Protein. Journal of Virology, 2005, 79, 3797-3806.	1.5	50

#	Article	IF	CITATIONS
55	Quantification of the DNA Cleavage and Packaging Proteins U L 15 and U L 28 in A and B Capsids of Herpes Simplex Virus Type 1. Journal of Virology, 2004, 78, 1367-1374.	1.5	29
56	Conformational Changes in the Nuclear Lamina Induced by Herpes Simplex Virus Type 1 Require Genes U L 31 and U L 34. Journal of Virology, 2004, 78, 5564-5575.	1.5	166
57	Herpes Simplex Virus 1 U L 31 and U L 34 Gene Products Promote the Late Maturation of Viral Replication Compartments to the Nuclear Periphery. Journal of Virology, 2004, 78, 5591-5600.	1.5	131
58	The Herpes Simplex Virus Type 1 UL20 Protein Modulates Membrane Fusion Events during Cytoplasmic Virion Morphogenesis and Virus-Induced Cell Fusion. Journal of Virology, 2004, 78, 5347-5357.	1.5	78
59	Effects of Charged Cluster Mutations on the Function of Herpes Simplex Virus Type 1 U L 34 Protein. Journal of Virology, 2003, 77, 7601-7610.	1.5	66
60	Ultrastructural Localization of the Herpes Simplex Virus Type 1 U L 31, U L 34, and U S 3 Proteins Suggests Specific Roles in Primary Envelopment and Egress of Nucleocapsids. Journal of Virology, 2002, 76, 8939-8952.	1.5	318
61	DNA Cleavage and Packaging Proteins Encoded by Genes UL28, UL15, and UL33 of Herpes Simplex Virus Type 1 Form a Complex in Infected Cells. Journal of Virology, 2002, 76, 4785-4791.	1.5	74
62	U L 31 and U L 34 Proteins of Herpes Simplex Virus Type 1 Form a Complex That Accumulates at the Nuclear Rim and Is Required for Envelopment of Nucleocapsids. Journal of Virology, 2001, 75, 8803-8817.	1.5	277
63	Herpes Simplex Virus Type 1 Gene UL14: Phenotype of a Null Mutant and Identification of the Encoded Protein. Journal of Virology, 2000, 74, 33-41.	1.5	44
64	Proteolytic Cleavage of the Amino Terminus of the U _L 15 Gene Product of Herpes Simplex Virus Type 1 Is Coupled with Maturation of Viral DNA into Unit-Length Genomes. Journal of Virology, 1999, 73, 8338-8348.	1.5	22
65	Herpes Simplex Virus DNA Cleavage and Packaging: Association of Multiple Forms of U L 15-Encoded Proteins with B Capsids Requires at Least the U L 6, U L 17, and U L 28 Genes. Journal of Virology, 1998, 72, 3045-3050.	1.5	61
66	The Herpes Simplex Virus Type 1 U _L 17 Gene Encodes Virion Tegument Proteins That Are Required for Cleavage and Packaging of Viral DNA. Journal of Virology, 1998, 72, 3779-3788.	1.5	121
67	Detection of a Novel Bovine Lymphotropic Herpesvirus. Journal of Virology, 1998, 72, 4237-4242.	1.5	69
68	The diversity and unity of herpesviridae. Comparative Immunology, Microbiology and Infectious Diseases, 1991, 14, 63-79.	0.7	54