
Keji Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457328/publications.pdf Version: 2024-02-01

Κειι λλλη

#	Article	IF	CITATIONS
1	Oxidation of Congo red by Fenton coupled with micro and nanobubbles. Environmental Technology (United Kingdom), 2023, 44, 2539-2548.	2.2	4
2	Remediation of the soil contaminated by heavy metals with nano-hydroxy iron phosphate coated with fulvic acid. Environmental Technology (United Kingdom), 2023, 44, 4123-4135.	2.2	1
3	Modeling and analysis of lignite particle drying based on the volume averaging method. Drying Technology, 2022, 40, 77-88.	3.1	9
4	Surface properties of oxidized lignite and its application in congo red dye adsorption. International Journal of Coal Preparation and Utilization, 2022, 42, 3516-3530.	2.1	1
5	Moisture removal behaviour of single hard lignite particle during drying and quantitative characterization for its surface damage. Canadian Journal of Chemical Engineering, 2022, 100, 2861-2871.	1.7	3
6	Hot-air drying shrinkage process of lignite and its cracking mechanism. Fuel, 2022, 316, 123187.	6.4	10
7	Preparation of high-capacity macroporous adsorbent using lignite-derived humic acid and its multifunctional binding chemistry for heavy metals in wastewater. Journal of Cleaner Production, 2022, 363, 132498.	9.3	14
8	Exploring a new way to generate mesopores in lignite by employing steam explosion. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021, 43, 600-610.	2.3	1
9	Adsorption of direct yellow brown D3G from aqueous solution using loaded modified low-cost lignite: Performance and mechanism. Environmental Technology (United Kingdom), 2021, 42, 1642-1651.	2.2	9
10	Preparation of Humic Acid/ <scp>l</scp> -Cysteine-Codecorated Magnetic Fe ₃ O ₄ Nanoparticles for Selective and Highly Efficient Adsorption of Mercury. ACS Omega, 2021, 6, 7941-7950.	3.5	17
11	Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126333.	4.7	63
12	Characteristics of Moisture Transfer and Surface Crack Development of a Single Lignite Particle Driven by Humidity Difference. ACS Omega, 2021, 6, 18702-18710.	3.5	6
13	Calcium-Modified Fe ₃ O ₄ Nanoparticles Encapsulated in Humic Acid for the Efficient Removal of Heavy Metals from Wastewater. Langmuir, 2021, 37, 10994-11007.	3.5	22
14	The fractionation of fulvic acid and the optimal fraction as explanatory factors for binding characteristics of lead in aqueous solution. Separation and Purification Technology, 2021, 275, 119061.	7.9	6
15	Adsorption of anionic azo dyes using lignite coke by one-step short-time pyrolysis. Fuel, 2020, 267, 117140.	6.4	14
16	Pore structure evolution and fractal characteristics of Zhaotong lignite during drying. Fuel, 2020, 267, 117309.	6.4	29
17	Experimental study of thermal fragmentation of lignite in drying process. Drying Technology, 2019, 37, 1731-1742.	3.1	7
18	Changes in Physicochemical Properties and the Release of Inorganic Species during Hydrothermal Dewatering of Lignite. Industrial & Engineering Chemistry Research, 2019, 58, 13294-13302.	3.7	13

Keji Wan

#	Article	IF	CITATIONS
19	Water Clusters in Lignite and Desorption Energy Calculation by Density Functional Theory. ACS Omega, 2019, 4, 14219-14225.	3.5	6
20	The relevance between water release behavior and pore evolution of hard lignite during the thermal-drying process. Journal of the Energy Institute, 2019, 92, 1689-1696.	5.3	10
21	Modification of Zhaotong Lignite by Steam Explosion Treatment: Pore Structure and Oxygen-Containing Functional Groups. Energy & Fuels, 2019, 33, 4033-4040.	5.1	18
22	Hot-air drying behavior and fragmentation characteristic of single lignite particle. Fuel, 2019, 247, 209-216.	6.4	26
23	Effect of moisture distribution in pore structure on fragmentation characteristics of lignite. Drying Technology, 2018, 36, 1949-1957.	3.1	7
24	Multiphysics modeling of water transport in high-intensity lignite drying process on poreÂscale. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2580-2589.	2.3	2
25	Thermal fragmentation and pulverization properties of lignite in drying process and its mechanism. Drying Technology, 2018, 36, 1404-1412.	3.1	16
26	Drying Kinetics of Soft and Hard Lignite and the Surface Characteristics of Products. Energy & Fuels, 2017, 31, 2439-2447.	5.1	16
27	Experimental Investigation of the Effects of Temperature, Moisture, and Physical Structure Variations on the Thermal Properties of Lignite. Energy & amp; Fuels, 2017, 31, 7052-7059.	5.1	9
28	Analysis of Water Forms in Lignite and Pore Size Distribution Measurement Utilizing Bound Water as a Molecular Probe. Energy & Fuels, 2017, 31, 11884-11891.	5.1	10
29	A comparison of desorption process of Chinese and Australian lignites by dynamic vapour sorption. Separation Science and Technology, 2016, 51, 1307-1316.	2.5	8
30	A comparison of acid treatment in the dewatering of Chinese and Australian lignites by mechanical thermal expression at high temperatures. Fuel Processing Technology, 2016, 144, 282-289.	7.2	11
31	Water desorption isotherms and net isosteric heat of desorption on lignite. Fuel, 2016, 171, 101-107.	6.4	43
32	TG–GC–MS study of volatile products from Shengli lignite pyrolysis. Fuel, 2015, 156, 121-128.	6.4	99