
Steven M Theg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457228/publications.pdf Version: 2024-02-01

STEVEN M THEC

#	Article	IF	CITATIONS
1	Hydrophobic mismatch is a key factor in protein transport across lipid bilayer membranes via the Tat pathway. Journal of Biological Chemistry, 2022, 298, 101991.	3.4	8
2	Widespread polycistronic gene expression in green algae. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
3	Electrochromic shift supports the membrane destabilization model of Tat-mediated transport and shows ion leakage during Sec transport. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
4	Methods for studying protein targeting to and within the chloroplast. Methods in Cell Biology, 2020, 160, 37-59.	1.1	1
5	Chloroplast Chaperonin-Mediated Targeting of a Thylakoid Membrane Protein. Plant Cell, 2020, 32, 3884-3901.	6.6	14
6	Membrane Chaperoning of a Thylakoid Protease Whose Structural Stability Is Modified by the Protonmotive Force. Plant Cell, 2020, 32, 1589-1609.	6.6	6
7	Protein Import Motors in Chloroplasts: On the Role of Chaperones. Plant Cell, 2020, 32, 536-542.	6.6	21
8	Determinants of the Specificity of Protein Targeting to Chloroplasts or Mitochondria. Molecular Plant, 2019, 12, 893-895.	8.3	8
9	Chloroplast Outer Membrane β-Barrel Proteins Use Components of the General Import Apparatus. Plant Cell, 2019, 31, 1845-1855.	6.6	21
10	Structural considerations of folded protein import through the chloroplast <scp>TOC</scp> / <scp>TIC</scp> translocons. FEBS Letters, 2019, 593, 565-572.	2.8	13
11	Chloroplast transport and import. Photosynthesis Research, 2018, 138, 261-262.	2.9	3
12	Evolution of protein transport to the chloroplast envelope membranes. Photosynthesis Research, 2018, 138, 315-326.	2.9	29
13	Isolation of Physiologically Active Thylakoids and Their Use in Energy-Dependent Protein Transport Assays. Journal of Visualized Experiments, 2018, , .	0.3	3
14	Evaluating the Functional Pore Size of Chloroplast TOC and TIC Protein Translocons: Import of Folded Proteins. Plant Cell, 2018, 30, 2161-2173.	6.6	28
15	A new fluorescence-based method to monitor the pH in the thylakoid lumen using GFP variants. Biochemical and Biophysical Research Communications, 2017, 486, 1-5.	2.1	7
16	The Formation of Stromules In Vitro from Chloroplasts Isolated from Nicotiana benthamiana. PLoS ONE, 2016, 11, e0146489.	2.5	13
17	New isoforms and assembly of glutamine synthetase in the leaf of wheat (<i>Triticum aestivum</i> L.). Journal of Experimental Botany, 2015, 66, 6827-6834.	4.8	26
18	ATP Requirement for Chloroplast Protein Import Is Set by the <i>K</i> Âm for ATP Hydrolysis of Stromal Hsp70 in <i>Physcomitrella patens</i> Â. Plant Cell, 2014, 26, 1246-1255.	6.6	54

STEVEN M THEG

#	Article	IF	CITATIONS
19	The chloroplast protein import system: From algae to trees. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 314-331.	4.1	158
20	Energetic cost of protein import across the envelope membranes of chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 930-935.	7.1	35
21	Role of Vesicleâ€Inducing Protein in Plastids 1 in cpTat transport at the thylakoid. Plant Journal, 2012, 71, 656-668.	5.7	44
22	Protein Targeting Across and into Chloroplast Membranes. Methods in Molecular Biology, 2011, 684, 139-157.	0.9	7
23	The motors of protein import into chloroplasts. Plant Signaling and Behavior, 2011, 6, 1397-1401.	2.4	14
24	Measurement of the ΔpH and Electric Field Developed Across Arabidopsis Thylakoids in the Light. Methods in Molecular Biology, 2011, 775, 327-341.	0.9	7
25	A Stromal Heat Shock Protein 70 System Functions in Protein Import into Chloroplasts in the Moss <i>Physcomitrella patens</i> Â Â Â. Plant Cell, 2010, 22, 205-220.	6.6	117
26	Measurement of the Energetics of Protein Transport Across the Chloroplast Thylakoid Membrane. Methods in Molecular Biology, 2010, 619, 323-337.	0.9	1
27	The Chloroplast Tat Pathway Transports Substrates in the Dark. Journal of Biological Chemistry, 2008, 283, 8822-8828.	3.4	13
28	The Sec and Tat Protein Translocation Pathways in Chloroplasts. The Enzymes, 2007, , 463-492.	1.7	25
29	The Chloroplast Tat Pathway Utilizes the Transmembrane Electric Potential as an Energy Source. Biophysical Journal, 2007, 93, 1993-1998.	0.5	64
30	Toc64 is not required for import of proteins into chloroplasts in the moss Physcomitrella patens. Plant Journal, 2005, 43, 675-687.	5.7	57
31	Protein- and energy-mediated targeting of chloroplast outer envelope membrane proteins. Plant Journal, 2005, 44, 917-927.	5.7	25
32	Complete maturation of the plastid protein translocation channel requires a type I signal peptidase. Journal of Cell Biology, 2005, 171, 425-430.	5.2	90
33	Carbonic Anhydrase Activity of the Photosystem II OEC33 Protein from Pea. Plant and Cell Physiology, 2005, 46, 1944-1953.	3.1	32
34	Chloroplast outer membrane protein targeting and insertion. Trends in Plant Science, 2005, 10, 450-457.	8.8	101
35	Protein Transport and Post-translational Processing in Photosystem II Biosynthesis and Homeostasis. , 2005, , 669-682.		2
36	A Homolog of Prokaryotic Thiol Disulfide Transporter CcdA Is Required for the Assembly of the Cytochrome bf Complex in Arabidopsis Chloroplasts. Journal of Biological Chemistry, 2004, 279, 32474-32482.	3.4	90

STEVEN M THEG

#	Article	IF	CITATIONS
37	Physcomitrella patens as a model for the study of chloroplast protein transport: conserved machineries between vascular and non-vascular plants. Plant Molecular Biology, 2003, 53, 643-654.	3.9	39
38	Protein transport via the cpTat pathway displays cooperativity and is stimulated by transport-incompetent substrate. FEBS Letters, 2003, 540, 96-100.	2.8	19
39	Energetics of Protein Transport across Biological Membranes. Cell, 2003, 112, 231-242.	28.9	103
40	Reciprocal Expression of Two Candidate Di-Iron Enzymes Affecting Photosystem I and Light-Harvesting Complex Accumulation. Plant Cell, 2002, 14, 673-688.	6.6	136
41	Characterization of the early steps of OE17 precursor transport by the thylakoid ΔpH/Tat machinery. FEBS Journal, 2000, 267, 2588-2598.	0.2	58
42	Identification of a Role for an Azide-Sensitive Factor in the Thylakoid Transport of the 17-Kilodalton Subunit of the Photosynthetic Oxygen-Evolving Complex1. Plant Physiology, 1998, 116, 805-814.	4.8	12
43	Assembly of Newly Imported Oxygen-Evolving Complex Subunits in Isolated Chloroplasts: Sites of Assembly and Mechanism of Binding. Plant Cell, 1997, 9, 441.	6.6	15
44	Unassembled subunits of the photosynthetic oxygen-evolving complex present in the thylakoid lumen are long-lived and assembly-competent. FEBS Letters, 1996, 391, 29-34.	2.8	52
45	Cryopreservation of Chloroplasts and Thylakoids for Studies of Protein Import and Integration. Plant Physiology, 1991, 95, 1259-1264.	4.8	13