
Shirong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5457127/publications.pdf Version: 2024-02-01

SHIDONG WANG

#	Article	IF	CITATIONS
1	Isomerâ€Pure Bisâ€PCBMâ€Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Advanced Materials, 2017, 29, 1606806.	21.0	320
2	Tailored Amphiphilic Molecular Mitigators for Stable Perovskite Solar Cells with 23.5% Efficiency. Advanced Materials, 2020, 32, e1907757.	21.0	303
3	Over 20% PCE perovskite solar cells with superior stability achieved by novel and low-cost hole-transporting materials. Nano Energy, 2017, 41, 469-475.	16.0	232
4	A Novel Dopantâ€Free Triphenylamine Based Molecular "Butterfly―Holeâ€Transport Material for Highly Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1600401.	19.5	161
5	Synergistic Effect of Fluorinated Passivator and Hole Transport Dopant Enables Stable Perovskite Solar Cells with an Efficiency Near 24%. Journal of the American Chemical Society, 2021, 143, 3231-3237.	13.7	152
6	Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 15239-15242.	4.1	134
7	Novel hole transporting materials with a linear ï€-conjugated structure for highly efficient perovskite solar cells. Chemical Communications, 2014, 50, 5829.	4.1	132
8	Impact of Peripheral Groups on Phenothiazine-Based Hole-Transporting Materials for Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 1145-1152.	17.4	125
9	Tuning the crystal growth of perovskite thin-films by adding the 2-pyridylthiourea additive for highly efficient and stable solar cells prepared in ambient air. Journal of Materials Chemistry A, 2017, 5, 13448-13456.	10.3	96
10	Suppressing defects through thiadiazole derivatives that modulate CH ₃ NH ₃ PbI ₃ crystal growth for highly stable perovskite solar cells under dark conditions. Journal of Materials Chemistry A, 2018, 6, 4971-4980.	10.3	95
11	Advances in SnO ₂ -based perovskite solar cells: from preparation to photovoltaic applications. Journal of Materials Chemistry A, 2021, 9, 19554-19588.	10.3	88
12	A novel one-step synthesized and dopant-free hole transport material for efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 16330-16334.	10.3	87
13	Dopantâ€Free Donor (D)–π–D–π–D Conjugated Holeâ€Transport Materials for Efficient and Stable Perovskite Solar Cells. ChemSusChem, 2016, 9, 2578-2585.	6.8	83
14	Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells. Dyes and Pigments, 2017, 136, 273-277.	3.7	83
15	Enhanced stability and optoelectronic properties of MAPbI ₃ films by a cationic surface-active agent for perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 10825-10834.	10.3	81
16	Carbon Nanotube Bridging Method for Hole Transport Layer-Free Paintable Carbon-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 916-923.	8.0	77
17	Structural Stability of Formamidinium- and Cesium-Based Halide Perovskites. ACS Energy Letters, 2021, 6, 1942-1969.	17.4	76
18	Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Letters, 2021, 6, 208-215.	17.4	67

SHIRONG WANG

#	Article	IF	CITATIONS
19	Enhancing quantum yield of CsPb(BrxCl1-x)3 nanocrystals through lanthanum doping for efficient blue light-emitting diodes. Nano Energy, 2020, 77, 105302.	16.0	55
20	How to apply metal halide perovskites to photocatalysis: challenges and development. Nanoscale, 2021, 13, 10281-10304.	5.6	47
21	Dopant-free and low-cost molecular "bee―hole-transporting materials for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 11429-11435.	5.5	40
22	Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 1319-1325.	5.5	39
23	Recent Progress of Perovskite Solar Cells. Current Nanoscience, 2016, 12, 137-156.	1.2	39
24	Novel carbazolyl-substituted spiro[acridine-9,9′-fluorene] derivatives as deep-blue emitting materials for OLED applications. Dyes and Pigments, 2018, 154, 30-37.	3.7	37
25	Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability. Organic Electronics, 2018, 53, 249-255.	2.6	35
26	Beyond efficiency fever: Preventing lead leakage for perovskite solar cells. Matter, 2022, 5, 1137-1161.	10.0	32
27	Molecular design and photovoltaic performance of a novel thiocyanate-based layered organometal perovskite material. Synthetic Metals, 2016, 215, 56-63.	3.9	31
28	Stable Perovskite Solar Cells based on Hydrophobic Triphenylamine Holeâ€Transport Materials. Energy Technology, 2017, 5, 312-320.	3.8	31
29	Organic Single-Crystalline p–n Heterojunctions for High-Performance Ambipolar Field-Effect Transistors and Broadband Photodetectors. ACS Applied Materials & Interfaces, 2018, 10, 42715-42722.	8.0	29
30	A novel bipolar carbazole/ phenanthroimidazole derivative for high efficiency nondoped deep-blue organic light-emitting diodes. Organic Electronics, 2019, 64, 259-265.	2.6	29
31	In Situ Synthesized 2D Covalent Organic Framework Nanosheets Induce Growth of Highâ€Quality Perovskite Film for Efficient and Stable Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	29
32	Impact of 9â€(4â€methoxyphenyl) Carbazole and Benzodithiophene Cores on Performance and Stability for Perovskite Solar Cells Based on Dopantâ€Free Holeâ€Transporting Materials. Solar Rrl, 2019, 3, 1900202.	5.8	28
33	Chemically doped hole transporting materials with low cross-linking temperature and high mobility for solution-processed green/red PHOLEDs. Chemical Engineering Journal, 2020, 391, 123479.	12.7	27
34	Transformation of Quasiâ€2D Perovskite into 3D Perovskite Using Formamidine Acetate Additive for Efficient Blue Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, 2105164.	14.9	26
35	Efficient, Stable, Dopantâ€Free Holeâ€Transport Material with a Triphenylamine Core for CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. Energy Technology, 2017, 5, 1173-1178.	3.8	25
36	Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. Journal of Materials Chemistry A, 2019, 7, 1509-1518.	10.3	25

SHIRONG WANG

#	Article	IF	CITATIONS
37	Modification of ITO anodes with self-assembled monolayers for enhancing hole injection in OLEDs. Applied Physics Letters, 2019, 114, .	3.3	25
38	Highly efficient hole injection/transport layer-free OLEDs based on self-assembled monolayer modified ITO by solution-process. Nano Energy, 2020, 78, 105399.	16.0	24
39	Self-assembled monolayer-modified ITO for efficient organic light-emitting diodes: The impact of different self-assemble monolayers on interfacial and electroluminescent properties. Organic Electronics, 2018, 56, 89-95.	2.6	23
40	Small molecular hole-transporting and emitting materials for hole-only green organic light-emitting devices. Dyes and Pigments, 2016, 131, 41-48.	3.7	22
41	Water-induced crystal phase transformation of stable lead-free Cu-based perovskite nanocrystals prepared by one-pot method. Chemical Engineering Journal, 2022, 427, 131430.	12.7	22
42	Improvement in photovoltaic performance of perovskite solar cells by interface modification and co-sensitization with novel asymmetry 7-coumarinoxy-4-methyltetrasubstituted metallophthalocyanines. Synthetic Metals, 2016, 220, 187-193.	3.9	21
43	A thermally cross-linked hole-transporting film with the remarkable solvent resistance for solution-processed OLEDs. Organic Electronics, 2018, 57, 345-351.	2.6	21
44	Efficient and Stable Large Bandgap MAPbBr ₃ Perovskite Solar Cell Attaining an Open Circuit Voltage of 1.65 V. ACS Energy Letters, 2022, 7, 1112-1119.	17.4	21
45	2,9,16,23-Tetrakis(7-coumarinoxy-4-methyl)- metallophthalocyanines -based hole transporting material for mixed-perovskite solar cells. Synthetic Metals, 2017, 226, 1-6.	3.9	20
46	Identifying high-performance and durable methylammonium-free lead halide perovskites <i>via</i> high-throughput synthesis and characterization. Energy and Environmental Science, 2021, 14, 6638-6654.	30.8	20
47	Dopantâ€Free Holeâ€Transport Material with a Tetraphenylethene Core for Efficient Perovskite Solar Cells. Energy Technology, 2017, 5, 1257-1264.	3.8	19
48	Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2016, 25, 702-708.	12.9	18
49	Organic Singleâ€Crystalline Donor–Acceptor Heterojunctions with Ambipolar Bandâ€Like Charge Transport for Photovoltaics. Advanced Materials Interfaces, 2018, 5, 1800336.	3.7	18
50	Zn ²⁺ -Doped Lead-Free CsMnCl ₃ Nanocrystals Enable Efficient Red Emission with a High Photoluminescence Quantum Yield. Journal of Physical Chemistry Letters, 2022, 13, 4688-4694.	4.6	18
51	Study on synthesis and properties of novel luminescent hole transporting materials based on N,N′-di(p-tolyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine core. Dyes and Pigments, 2013, 97, 92-99.	3.7	16
52	Achieving highly efficient blue light-emitting polymers by incorporating a styrylarylene amine unit. Journal of Materials Chemistry C, 2018, 6, 12355-12363.	5.5	16
53	Inkjet-printed alloy-like cross-linked hole-transport layer for high-performance solution-processed green phosphorescent OLEDs. Journal of Materials Chemistry C, 2021, 9, 12712-12719.	5.5	16
54	Constructing Effective Hole Transport Channels in Cross‣inked Hole Transport Layer by Stacking Discotic Molecules for High Performance Deep Blue QLEDs. Advanced Science, 2022, 9, .	11.2	16

SHIRONG WANG

#	Article	IF	CITATIONS
55	Impact of peripheral groups on pyrimidine acceptor-based HLCT materials for efficient deep blue OLED devices. Journal of Materials Chemistry C, 2022, 10, 9953-9960.	5.5	15
56	Effect of concomitant anti-solvent engineering on perovskite grain growth and its high efficiency solar cells. Science China Materials, 2021, 64, 267-276.	6.3	14
57	Film-forming hole transporting materials for high brightness flexible organic light-emitting diodes. Dyes and Pigments, 2016, 125, 36-43.	3.7	13
58	Two trans-1-(9-anthryl)-2-phenylethene derivatives as blue-green emitting materials for highly bright organic light-emitting diodes application. Organic Electronics, 2017, 50, 228-238.	2.6	11
59	Regulation of peripheral tert-butyl position: Approaching efficient blue OLEDs based on solution-processable hole-transporting materials. Organic Electronics, 2019, 71, 85-92.	2.6	11
60	Hole transport layer-free deep-blue OLEDs with outstanding colour purity and high efficiency. Journal of Materials Chemistry C, 2020, 8, 9184-9188.	5.5	11
61	Tunable White Light-Emitting Devices Based on Unilaminar High-Efficiency Zn ²⁺ -Doped Blue CsPbBr ₃ Quantum Dots. Journal of Physical Chemistry Letters, 2021, 12, 8507-8512.	4.6	11
62	Alcoholâ€Soluble Electronâ€Transport Materials for Fully Solutionâ€Processed Green PhOLEDs. Chemistry - an Asian Journal, 2018, 13, 1335-1341.	3.3	10
63	A low-cost thiophene-based hole transport material for efficient and stable perovskite solar cells. Organic Electronics, 2019, 71, 194-198.	2.6	10
64	Enhancing hole injection by processing ITO through MoO3 and self-assembled monolayer hybrid modification for solution-processed hole transport layer-free OLEDs. Chemical Engineering Journal, 2022, 427, 131356.	12.7	8
65	Low-temperature cross-linkable hole transporting materials through chemical doping for solution-processed green PHOLEDs. Organic Electronics, 2021, 99, 106334.	2.6	6
66	Enhanced efficiency and stability of organic light-emitting diodes via binary self-assembled monolayers of aromatic and aliphatic compounds on indium tin oxide. Organic Electronics, 2020, 84, 105752.	2.6	3
67	Blue emissive dimethylmethylene-bridged triphenylamine derivatives appending cross-linkable groups. Organic and Biomolecular Chemistry, 2020, 18, 3754-3760.	2.8	2
68	Preparation and Lithium Storage Properties of Hierarchical Hydrangea‣ike MoS ₂ /C Composites. Energy Technology, 2022, 10, .	3.8	2
69	Study on Thermal Simulation of LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 Battery. Energy Technology, 2021, 9, 2000816.	3.8	1
70	Triazine-based OLEDs with simplified structure and high efficiency by solution-processed procedure. Journal of Materials Science: Materials in Electronics, 2020, 31, 19943-19949.	2.2	0