
Thomas Oliver Wiedmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456664/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Creating multiâ€scale nested MRIO tables for linking localized impacts to global consumption drivers. Journal of Industrial Ecology, 2022, 26, 281-293.	2.8	9
2	Bridging planetary boundaries and spatial heterogeneity in a hybrid approach: A focus on Chinese provinces and industries. Science of the Total Environment, 2022, 804, 150179.	3.9	19
3	Modelling ambitious climate mitigation pathways for Australia's built environment. Sustainable Cities and Society, 2022, 77, 103554.	5.1	25
4	Transdisciplinary resource monitoring is essential to prioritize circular economy strategies in cities. Environmental Research Letters, 2022, 17, 021001.	2.2	4
5	Estimating CO ₂ emissions for 108 000 European cities. Earth System Science Data, 2022, 14, 845-864.	3.7	10
6	Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nature Sustainability, 2022, 5, 157-166.	11.5	69
7	A Fully Decentralized Hierarchical Transactive Energy Framework for Charging EVs With Local DERs in Power Distribution Systems. IEEE Transactions on Transportation Electrification, 2022, 8, 3041-3055.	5.3	16
8	Accelerating electric vehicle uptake: Modelling public policy options on prices and infrastructure. Transportation Research, Part A: Policy and Practice, 2022, 162, 155-174.	2.0	13
9	The role of electric vehicles in decarbonising Australia's road transport sector: modelling ambitious scenarios. Energy Policy, 2022, 168, 113144.	4.2	11
10	Assessing the greenhouse gas mitigation potential of urban precincts with hybrid life cycle assessment. Journal of Cleaner Production, 2021, 279, 123731.	4.6	10
11	A review of the water-related energy consumption of the food system in nexus studies. Journal of Cleaner Production, 2021, 279, 123414.	4.6	30
12	Hidden Energy Flow indicator to reflect the outsourced energy requirements of countries. Journal of Cleaner Production, 2021, 278, 123827.	4.6	21
13	Threeâ€scope carbon emission inventories of global cities. Journal of Industrial Ecology, 2021, 25, 735-750.	2.8	63
14	Quantifying carbon flows in Switzerland: top-down meets bottom-up modelling. Environmental Research Letters, 2021, 16, 014018.	2.2	4
15	Modelling national transformations to achieve the SDGs within planetary boundaries in small island developing states. Global Sustainability, 2021, 4, .	1.6	12
16	Increasing Electric Vehicle Uptake by Updating Public Policies to Shift Attitudes and Perceptions: Case Study of New Zealand. Energies, 2021, 14, 2920.	1.6	21
17	City footprints and SDGs provide untapped potential for assessing city sustainability. Nature Communications, 2021, 12, 3758.	5.8	68
18	A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environmental Research Letters, 2021, 16, 073005.	2.2	421

#	Article	IF	CITATIONS
19	The role of planetary boundaries in assessing absolute environmental sustainability across scales. Environment International, 2021, 152, 106475.	4.8	45
20	Modern slavery footprints in global supply chains. Journal of Industrial Ecology, 2021, 25, 1518-1528.	2.8	12
21	Benchmarking urban performance against absolute measures of sustainability – A review. Journal of Cleaner Production, 2021, 314, 128020.	4.6	8
22	A multi-regional input-output analysis of direct and virtual urban water flows to reduce city water footprints in Australia. Sustainable Cities and Society, 2021, 75, 103236.	5.1	26
23	Priorities for science to support national implementation of the sustainable development goals: A review of progress and gaps. Sustainable Development, 2021, 29, 635-652.	6.9	54
24	Electric Vehicle Uptake: Understanding the Print Media's Role in Changing Attitudes and Perceptions. World Electric Vehicle Journal, 2021, 12, 174.	1.6	7
25	Planetary Boundaries for Forests and Their National Exceedance. Environmental Science & Technology, 2021, 55, 15423-15434.	4.6	7
26	Evidence of decoupling consumption-based CO2 emissions from economic growth. Advances in Applied Energy, 2021, 4, 100074.	6.6	51
27	Enabling Full Supply Chain Corporate Responsibility: Scope 3 Emissions Targets for Ambitious Climate Change Mitigation. Environmental Science & Technology, 2020, 54, 400-411.	4.6	27
28	The impact of value engineering on embodied greenhouse gas emissions in the built environment: A hybrid life cycle assessment. Building and Environment, 2020, 168, 106452.	3.0	25
29	Discovery of a possible Well-being Turning Point within energy footprint accounts which may support the degrowth theory. Energy for Sustainable Development, 2020, 59, 22-32.	2.0	12
30	Exploring consumption-based planetary boundary indicators: An absolute water footprinting assessment of Chinese provinces and cities. Water Research, 2020, 184, 116163.	5.3	45
31	The capital load of global material footprints. Resources, Conservation and Recycling, 2020, 158, 104811.	5.3	51
32	Implications of Trends in Energy Return on Energy Invested (EROI) for Transitioning to Renewable Electricity. Ecological Economics, 2020, 176, 106726.	2.9	29
33	Scientists' warning on affluence. Nature Communications, 2020, 11, 3107.	5.8	503
34	Saving less in China facilitates global CO2 mitigation. Nature Communications, 2020, 11, 1358.	5.8	24
35	Global socio-economic losses and environmental gains from the Coronavirus pandemic. PLoS ONE, 2020, 15, e0235654.	1.1	218
36	Spatial consumption-based carbon footprint assessments - A review of recent developments in the field. Journal of Cleaner Production, 2020, 256, 120335.	4.6	75

#	Article	IF	CITATIONS
37	The sharing economy and sustainability – assessing Airbnb's direct, indirect and induced carbon footprint in Sydney. Journal of Sustainable Tourism, 2020, 28, 1083-1099.	5.7	40
38	A two-stage clustering approach to investigate lifestyle carbon footprints in two Australian cities. Environmental Research Letters, 2020, 15, 104096.	2.2	17
39	Advancements in Inputâ€Output Models and Indicators for Consumptionâ€Based Accounting. Journal of Industrial Ecology, 2019, 23, 300-312.	2.8	70
40	Prioritising SDG targets: assessing baselines, gaps and interlinkages. Sustainability Science, 2019, 14, 421-438.	2.5	349
41	Supply-side carbon accounting and mitigation analysis for Beijing-Tianjin-Hebei urban agglomeration in China. Journal of Environmental Management, 2019, 248, 109243.	3.8	18
42	Development of Low-Carbon Urban Forms—Concepts, Tools and Scenario Analysis. , 2019, , 227-244.		3
43	Towards meaningful consumption-based planetary boundary indicators: The phosphorus exceedance footprint. Global Environmental Change, 2019, 54, 227-238.	3.6	66
44	Assessing Embodied Greenhouse Gas Emissions in the Built Environment. , 2019, , 119-141.		1
45	Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models. Applied Energy, 2019, 250, 1321-1335.	5.1	45
46	What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications. Environmental Research Letters, 2019, 14, 093001.	2.2	65
47	Review on City-Level Carbon Accounting. Environmental Science & amp; Technology, 2019, 53, 5545-5558.	4.6	75
48	A flexible framework for assessing the sustainability of alternative water supply options. Science of the Total Environment, 2019, 671, 1257-1268.	3.9	25
49	Carbon emissions embodied in China–Australia trade: A scenario analysis based on input–output analysis and panel regression models. Journal of Cleaner Production, 2019, 220, 721-731.	4.6	66
50	Greater gains for Australia by tackling all SDGs but the last steps will be the most challenging. Nature Sustainability, 2019, 2, 1041-1050.	11.5	73
51	Global supply chains hotspots of a wind energy company. Journal of Cleaner Production, 2019, 210, 1042-1050.	4.6	17
52	Modeling the carbon budget of the Australian electricity sector's transition to renewable energy. Renewable Energy, 2018, 125, 712-728.	4.3	19
53	The Australian industrial ecology virtual laboratory and multi-scale assessment of buildings and construction. Energy and Buildings, 2018, 164, 14-20.	3.1	19
54	Environmental and social footprints of international trade. Nature Geoscience, 2018, 11, 314-321.	5.4	553

#	Article	IF	CITATIONS
55	Hybrid life cycle inventory methods – A review. Journal of Cleaner Production, 2018, 172, 1273-1288.	4.6	212
56	Global warming impact of suburbanization: The case of Sydney. Journal of Cleaner Production, 2018, 172, 287-301.	4.6	42
57	Assessing carbon footprints of cities under limited information. Journal of Cleaner Production, 2018, 176, 1254-1270.	4.6	70
58	Implementing hybrid LCA routines in an input–output virtual laboratory. Journal of Economic Structures, 2018, 7, .	0.6	21
59	Decomposition of integrated hybrid life cycle inventories by origin and final-stage inputs. Journal of Economic Structures, 2018, 7, .	0.6	2
60	Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials. Journal of Economic Structures, 2018, 7, .	0.6	38
61	Consumption-based greenhouse gas emissions accounting with capital stock change highlights dynamics of fast-developing countries. Nature Communications, 2018, 9, 3581.	5.8	87
62	Initial progress in implementing the Sustainable Development Goals (SDGs): a review of evidence from countries. Sustainability Science, 2018, 13, 1453-1467.	2.5	306
63	Decoupling between human development and energy consumption within footprint accounts. Journal of Cleaner Production, 2018, 202, 1145-1157.	4.6	90
64	Eutrophication's neglected drivers. Nature Sustainability, 2018, 1, 273-274.	11.5	11
65	Urban carbon transformations: unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis. Journal of Cleaner Production, 2017, 163, 224-240.	4.6	104
66	An Iterative Framework for National Scenario Modelling for the Sustainable Development Goals (SDGs). Sustainable Development, 2017, 25, 372-385.	6.9	50
67	An input–output virtual laboratory in practice – survey of uptake, usage and applications of the first operational IELab. Economic Systems Research, 2017, 29, 296-312.	1.2	29
68	Cost and embodied carbon reductions in cutter soil mix walls through fibre reinforcement. Geosynthetics International, 2017, , 1-13.	1.5	4
69	Indicator-based assessments of progress towards the sustainable development goals (SDGs): a case study from the Arab region. Sustainability Science, 2017, 12, 975-989.	2.5	100
70	New multi-regional input–output databases for Australia – enabling timely and flexible regional analysis. Economic Systems Research, 2017, 29, 275-295.	1.2	59
71	The Global MRIO Lab – charting the world economy. Economic Systems Research, 2017, 29, 158-186.	1.2	74
72	Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. Journal of Cleaner Production, 2017, 152, 312-320.	4.6	219

#	Article	IF	CITATIONS
73	Electrifying Australian transport: Hybrid life cycle analysis of a transition to electric light-duty vehicles and renewable electricity. Applied Energy, 2017, 206, 531-540.	5.1	61
74	The Carbon Footprint of Australia's Construction Sector. Procedia Engineering, 2017, 180, 211-220.	1.2	81
75	Computing life-cycle emissions from transitioning the electricity sector using a discrete numerical approach. Energy, 2017, 137, 314-324.	4.5	9
76	Towards an Automated Approach for Compiling Hybrid Life Cycle Inventories. Procedia Engineering, 2017, 180, 157-166.	1.2	28
77	Replacement Scenarios for Construction Materials Based on Economy-wide Hybrid LCA. Procedia Engineering, 2017, 180, 179-189.	1.2	23
78	On the decomposition of total impact multipliers in a supply and use framework. Journal of Economic Structures, 2017, 6, .	0.6	9
79	Potentials to decarbonize electricity consumption in Australia. , 2017, , 91-108.		Ο
80	City Carbon Footprint Networks. Energies, 2016, 9, 602.	1.6	71
81	The Concept of City Carbon Maps: A Case Study of Melbourne, Australia. Journal of Industrial Ecology, 2016, 20, 676-691.	2.8	118
82	Consumption-based material flow indicators — Comparing six ways of calculating the Austrian raw material consumption providing six results. Ecological Economics, 2016, 128, 177-186.	2.9	46
83	Accounting for value added embodied in trade and consumption: an intercomparison of global multiregional input–output databases. Economic Systems Research, 2016, 28, 78-94.	1.2	42
84	Transnational city carbon footprint networks – Exploring carbon links between Australian and Chinese cities. Applied Energy, 2016, 184, 1082-1092.	5.1	85
85	Reply to 'Consistency of technology-adjusted consumption-based accounting'. Nature Climate Change, 2016, 6, 730-730.	8.1	8
86	National pathways to the Sustainable Development Goals (SDGs): A comparative review of scenario modelling tools. Environmental Science and Policy, 2016, 66, 199-207.	2.4	203
87	Impacts Embodied in Global Trade Flows. , 2016, , 159-180.		24
88	Carbon footprint scenarios for renewable electricity in Australia. Journal of Cleaner Production, 2016, 124, 236-245.	4.6	72
89	International inequality of environmental pressures: Decomposition and comparative analysis. Ecological Indicators, 2016, 62, 163-173.	2.6	70
90	Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions. Journal of Cleaner Production, 2016, 132, 45-56.	4.6	382

#	Article	IF	CITATIONS
91	Case Studies of the Economic, Environmental, and Social Impacts of Direct Potable Reuse. Proceedings of the Water Environment Federation, 2016, 2016, 5302-5314.	0.0	0
92	Integrated Carbon Metrics and Assessment for the Built Environment. Procedia CIRP, 2015, 29, 480-485.	1.0	8
93	CO2 emission clusters within global supply chain networks: Implications for climate change mitigation. Global Environmental Change, 2015, 35, 486-496.	3.6	106
94	The footprint of using metals: new metrics of consumption and productivity. Environmental Economics and Policy Studies, 2015, 17, 369-388.	0.8	44
95	Making Sense of the Minefield of Footprint Indicators. Environmental Science & Technology, 2015, 49, 2601-2603.	4.6	38
96	National greenhouse-gas accounting for effective climate policy on international trade. Nature Climate Change, 2015, 5, 431-435.	8.1	216
97	The material footprint of nations. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6271-6276.	3.3	1,114
98	Greenhouse Gas Emissions and the Australian Diet—Comparing Dietary Recommendations with Average Intakes. Nutrients, 2014, 6, 289-303.	1.7	70
99	Compiling and using input–output frameworks through collaborative virtual laboratories. Science of the Total Environment, 2014, 485-486, 241-251.	3.9	151
100	A STRUCTURAL DECOMPOSITION APPROACH TO COMPARING MRIO DATABASES. Economic Systems Research, 2014, 26, 262-283.	1.2	120
101	Humanity's unsustainable environmental footprint. Science, 2014, 344, 1114-1117.	6.0	749
102	Modelling Interactions Between Economic Activity, Greenhouse Gas Emissions, Biodiversity and Agricultural Production. Environmental Modeling and Assessment, 2013, 18, 377-416.	1.2	13
103	Carbon footprints of cities and other human settlements in the UK. Environmental Research Letters, 2013, 8, 035039.	2.2	355
104	POLICY-RELEVANT APPLICATIONS OF ENVIRONMENTALLY EXTENDED MRIO DATABASES – EXPERIENCES FROM THE UK. Economic Systems Research, 2013, 25, 143-156.	1.2	62
105	Consumption-based GHG emission accounting: a UK case study. Climate Policy, 2013, 13, 451-470.	2.6	268
106	Our materials footprint may be smaller, but still oversize. Ecos, 2013, , .	0.0	0
107	Integrating Ecological, Carbon and Water footprint into a "Footprint Family―of indicators: Definition and role in tracking human pressure on the planet. Ecological Indicators, 2012, 16, 100-112.	2.6	645
108	Integrating ecological and water footprint accounting in a multi-regional input–output framework. Ecological Indicators, 2012, 23, 1-8.	2.6	229

#	Article	IF	CITATIONS
109	General approaches for assessing urban environmental sustainability. Current Opinion in Environmental Sustainability, 2012, 4, 458-464.	3.1	179
110	Defining (Urban) Producer and Consumer Sinks. Journal of Industrial Ecology, 2012, 16, 317-321.	2.8	6
111	Identification of â€~Carbon Hot-Spots' and Quantification of GHG Intensities in the Biodiesel Supply Chain Using Hybrid LCA and Structural Path Analysis. Environmental Science & Technology, 2011, 45, 2471-2478.	4.6	153
112	Application of Hybrid Life Cycle Approaches to Emerging Energy Technologies – The Case of Wind Power in the UK. Environmental Science & Technology, 2011, 45, 5900-5907.	4.6	234
113	Comment on "Corporate Carbon Performance Indicators Revisitedâ€, Journal of Industrial Ecology, 2011, 15, 158-160.	2.8	6
114	Quo Vadis MRIO? Methodological, data and institutional requirements for multi-region input–output analysis. Ecological Economics, 2011, 70, 1937-1945.	2.9	299
115	A greenhouse gas footprint analysis of UK Central Government, 1990–2008. Environmental Science and Policy, 2011, 14, 1041-1051.	2.4	37
116	A Review of the Ecological Footprint Indicator—Perceptions and Methods. Sustainability, 2010, 2, 1645-1693.	1.6	220
117	A CARBON FOOTPRINT TIME SERIES OF THE UK – RESULTS FROM A MULTI-REGION INPUT–OUTPUT MODEL. Economic Systems Research, 2010, 22, 19-42.	1.2	253
118	UNCERTAINTY ANALYSIS FOR MULTI-REGION INPUT–OUTPUT MODELS – A CASE STUDY OF THE UK'S CARBC FOOTPRINT. Economic Systems Research, 2010, 22, 43-63.	NN 1.2	237
119	A research agenda for improving national Ecological Footprint accounts. Ecological Economics, 2009, 68, 1991-2007.	2.9	239
120	A first empirical comparison of energy Footprints embodied in trade — MRIO versus PLUM. Ecological Economics, 2009, 68, 1975-1990.	2.9	132
121	A review of recent multi-region input–output models used for consumption-based emission and resource accounting. Ecological Economics, 2009, 69, 211-222.	2.9	906
122	Companies on the Scale. Journal of Industrial Ecology, 2009, 13, 361-383.	2.8	147
123	Environmental implications of urbanization and lifestyle change in China: Ecological and Water Footprints. Journal of Cleaner Production, 2009, 17, 1241-1248.	4.6	299
124	INPUT–OUTPUT ANALYSIS AND CARBON FOOTPRINTING: AN OVERVIEW OF APPLICATIONS. Economic Systems Research, 2009, 21, 187-216.	1.2	436
125	EDITORIAL: CARBON FOOTPRINT AND INPUT–OUTPUT ANALYSIS – AN INTRODUCTION. Economic Systems Research, 2009, 21, 175-186.	1.2	242
126	The CO2 †trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input–output analysis with limited data. Ecological Economics, 2008, 66, 662-673.	2.9	88

#	Article	IF	CITATIONS
127	Unravelling the Impacts of Supply Chains—A New Triple-Bottom-Line Accounting Approach and Software Tool. Eco-efficiency in Industry and Science, 2008, , 65-90.	0.1	7
128	Shared producer and consumer responsibility — Theory and practice. Ecological Economics, 2007, 61, 27-42.	2.9	505
129	On the conversion between local and global hectares in Ecological Footprint analysis. Ecological Economics, 2007, 60, 673-677.	2.9	76
130	Examining the global environmental impact of regional consumption activities — Part 2: Review of input–output models for the assessment of environmental impacts embodied in trade. Ecological Economics, 2007, 61, 15-26.	2.9	541
131	Examining the global environmental impact of regional consumption activities — Part 1: A technical note on combining input–output and ecological footprint analysis. Ecological Economics, 2007, 62, 37-44.	2.9	214
132	The Environmental Impacts of Consumption at a Subnational Level. Journal of Industrial Ecology, 2006, 10, 9-24.	2.8	68
133	Allocating ecological footprints to final consumption categories with input–output analysis. Ecological Economics, 2006, 56, 28-48.	2.9	320
134	Exploring the application of the Ecological Footprint to sustainable consumption policy. Journal of Environmental Policy and Planning, 2005, 7, 303-316.	1.5	28
135	Title is missing!. The Journal of Sustainable Product Design, 2001, 1, 147-161.	0.4	71
136	Alles zu PVC: <i> PVC und Umwelt. Eine Bestandsaufnahme. Von H. Pohle. Springer, Heidelberg, 1997. 222 S., geb., 98,―DM. ISBN 3â€540â€61705â€1.</i> . Nachrichten Aus Der Chemie, 1998, 46, 244-245.	0.0	0
137	Lehrbuch zur Umweltchemie: <i>Basic Concepts of Environmental Chemistry. Von D. W. Connell. CRC Press, Boca Raton, 1997. 506 S., geb., 93―DM. ISBN 0â€87371â€998â€0.</i> . Nachrichten Aus Der Chemie, 19 1101-1102.	9 8), ∉6,	0
138	Influence of the substitution pattern on the microbial degradation of mono- to tetrachlorinated dibenzo-p-dioxins and dibenzofurans. Chemosphere, 1997, 34, 1315-1331.	4.2	30
139	Clobal Distribution of Tetrachloroethene in the Troposphere: Measurements and Modeling. Environmental Science & Technology, 1994, 28, 2321-2329.	4.6	43
140	Quantification of chlorinated naphthalenes with GC-MS using the molar response of electron impact ionization. Fresenius' Journal of Analytical Chemistry, 1993, 346, 800-804.	1.5	57