
David F Clayton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcript―and annotationâ€guided genome assembly of the European starling. Molecular Ecology Resources, 2022, 22, 3141-3160.	4.8	9
2	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	27.8	1,139
3	Acoustic developmental programming: a mechanistic and evolutionary framework. Trends in Ecology and Evolution, 2021, 36, 722-736.	8.7	15
4	The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23252-23260.	7.1	44
5	Acute social isolation alters neurogenomic state in songbird forebrain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23311-23316.	7.1	25
6	Serotonin Expression in the Song Circuitry of Adult Male Zebra Finches. Neuroscience, 2020, 444, 170-182.	2.3	4
7	Learning birdsong by imitation. Science, 2019, 366, 33-34.	12.6	4
8	Urotensin-related gene transcripts mark developmental emergence of the male forebrain vocal control system in songbirds. Scientific Reports, 2019, 9, 816.	3.3	5
9	The variability of song variability in zebra finch (<i>Taeniopygia guttata</i>) populations. Royal Society Open Science, 2019, 6, 190273.	2.4	7
10	Variation in Reproductive Success Across Captive Populations: Methodological Differences, Potential Biases and Opportunities. Ethology, 2017, 123, 1-29.	1.1	60
11	Detailed temporal structure of communication networks in groups of songbirds. Journal of the Royal Society Interface, 2016, 13, 20160296.	3.4	18
12	Acoustic event detection for multiple overlapping similar sources. , 2015, , .		21
13	The opportunities and challenges of large-scale molecular approaches to songbird neurobiology. Neuroscience and Biobehavioral Reviews, 2015, 50, 70-76.	6.1	16
14	Functional genomic analysis and neuroanatomical localization of miR-2954, a song-responsive sex-linked microRNA in the zebra finch. Frontiers in Neuroscience, 2014, 8, 409.	2.8	14
15	Advancing avian behavioral neuroendocrinology through genomics. Frontiers in Neuroendocrinology, 2014, 35, 58-71.	5.2	7
16	Brain transcriptome sequencing and assembly of three songbird model systems for the study of social behavior. PeerJ, 2014, 2, e396.	2.0	31
17	New Frontiers for Organismal Biology. BioScience, 2013, 63, 464-471.	4.9	30
18	Noninvasive diffusive optical imaging of the auditory response to birdsong in the zebra finch. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2013, 199, 227-238.	1.6	1

#	Article	IF	CITATIONS
19	The Genomics of Memory and Learning in Songbirds. Annual Review of Genomics and Human Genetics, 2013, 14, 45-65.	6.2	40
20	Brain transcriptome of the violet-eared waxbill <i>Uraeginthus granatina</i> and recent evolution in the songbird genome. Open Biology, 2013, 3, 130063.	3.6	16
21	Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17245-17252.	7.1	55
22	RNA-seq transcriptome analysis of male and female zebra finch cell lines. Genomics, 2012, 100, 363-369.	2.9	23
23	High throughput analysis reveals dissociable gene expression profiles in two independent neural systems involved in the regulation of social behavior. BMC Neuroscience, 2012, 13, 126.	1.9	25
24	Seasonal Changes in Patterns of Gene Expression in Avian Song Control Brain Regions. PLoS ONE, 2012, 7, e35119.	2.5	43
25	Reptiles and Mammals Have Differentially Retained Long Conserved Noncoding Sequences from the Amniote Ancestor. Genome Biology and Evolution, 2011, 3, 102-113.	2.5	28
26	Small molecule analysis and imaging of fatty acids in the zebra finch song system using timeâ€ofâ€flightâ€secondary ion mass spectrometry. Journal of Neurochemistry, 2011, 118, 499-511.	3.9	24
27	Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain. BMC Genomics, 2011, 12, 277.	2.8	45
28	The Zebra Finch genome and avian genomics in the wild. Emu, 2010, 110, 233-241.	0.6	18
29	Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch. BMC Neuroscience, 2010, 11, 46.	1.9	27
30	The zebra finch neuropeptidome: prediction, detection and expression. BMC Biology, 2010, 8, 28.	3.8	44
31	The genome of a songbird. Nature, 2010, 464, 757-762.	27.8	770
32	Sex bias and dosage compensation in the zebra finch versus chicken genomes: General and specialized patterns among birds. Genome Research, 2010, 20, 512-518.	5.5	112
33	The neurobiology of Zebra Finch song: insights from gene expression studies. Emu, 2010, 110, 219-232.	0.6	11
34	Molecular evolution of genes in avian genomes. Genome Biology, 2010, 11, R68.	9.6	125
35	Seasonal Differences of Gene Expression Profiles in Song Sparrow (Melospiza melodia) Hypothalamus in Relation to Territorial Aggression. PLoS ONE, 2009, 4, e8182.	2.5	79
36	Discrete molecular states in the brain accompany changing responses to a vocal signal. Proceedings of the United States of America, 2009, 106, 11364-11369.	7.1	75

#	Article	IF	CITATIONS
37	Sexual differentiation of the zebra finch song system: potential roles for sex chromosome genes. BMC Neuroscience, 2009, 10, 24.	1.9	55
38	Integrating Genomes, Brain and Behavior in the Study of Songbirds. Current Biology, 2009, 19, R865-R873.	3.9	51
39	Conservation and expression of IQâ€domainâ€containing calpacitin gene products (neuromodulin/GAPâ€43,) Tj Neurobiology, 2009, 69, 124-140.	ETQq1 1 (3.0	0.784314 rgB 13
40	Developmental shifts in gene expression in the auditory forebrain during the sensitive period for song learning. Developmental Neurobiology, 2009, 69, 437-450.	3.0	48
41	Habituation in songbirds. Neurobiology of Learning and Memory, 2009, 92, 183-188.	1.9	76
42	Habituation revisited: An updated and revised description of the behavioral characteristics of habituation. Neurobiology of Learning and Memory, 2009, 92, 135-138.	1.9	1,167
43	Partial dissociation of molecular and behavioral measures of song habituation in adult zebra finches. Genes, Brain and Behavior, 2008, 7, 802-809.	2.2	42
44	Functional identification of sensory mechanisms required for developmental song learning. Nature Neuroscience, 2008, 11, 579-586.	14.8	197
45	TECHNICAL ADVANCES: A microarray for largeâ€scale genomic and transcriptional analyses of the zebra finch (<i>Taeniopygia guttata</i>) and other passerines. Molecular Ecology Resources, 2008, 8, 275-281.	4.8	19
46	Natural selection in avian protein-coding genes expressed in brain. Molecular Ecology, 2008, 17, 3008-3017.	3.9	51
47	The Songbird Neurogenomics (SoNG) Initiative: Community-based tools and strategies for study of brain gene function and evolution. BMC Genomics, 2008, 9, 131.	2.8	126
48	Genes and Social Behavior. Science, 2008, 322, 896-900.	12.6	546
49	Expression of fragile X mental retardation protein within the vocal control system of developing and adult male zebra finches. Neuroscience, 2008, 157, 132-142.	2.3	16
50	Birdsong "Transcriptomics― Neurochemical Specializations of the Oscine Song System. PLoS ONE, 2008, 3, e3440.	2.5	85
51	Proteomic Analyses of Songbird (Zebra finch; Taeniopygia guttata) Retina. Journal of Proteome Research, 2007, 6, 1093-1100.	3.7	10
52	Proteomic Analyses of Zebra Finch Optic Tectum and Comparative Histochemistry. Journal of Proteome Research, 2007, 6, 2341-2350.	3.7	11
53	Lipid imaging in the zebra finch brain with secondary ion mass spectrometry. International Journal of Mass Spectrometry, 2007, 260, 121-127.	1.5	31
54	Dosage compensation is less effective in birds than in mammals. Journal of Biology, 2007, 6, 2.	2.7	304

#	Article	IF	CITATIONS
55	Molecular Neurobiology of Bird Song. , 2007, , 373-417.		2
56	Dynamic Role of Postsynaptic Caspase-3 and BIRC4 in Zebra Finch Song-Response Habituation. Neuron, 2006, 52, 1061-1072.	8.1	108
57	Activation and Habituation of Extracellular Signal-Regulated Kinase Phosphorylation in Zebra Finch Auditory Forebrain during Song Presentation. Journal of Neuroscience, 2004, 24, 7503-7513.	3.6	63
58	Songbird Genomics: Methods, Mechanisms, Opportunities, and Pitfalls. Annals of the New York Academy of Sciences, 2004, 1016, 45-60.	3.8	38
59	A cDNA microarray from the telencephalon of juvenile male and female zebra finches. Journal of Neuroscience Methods, 2004, 138, 199-206.	2.5	42
60	Context-specific habituation of the zenk gene response to song in adult zebra finches. Neurobiology of Learning and Memory, 2004, 82, 99-108.	1.9	73
61	Rapidly learned song-discrimination without behavioral reinforcement in adult male zebra finches (Taeniopygia guttata). Neurobiology of Learning and Memory, 2003, 79, 41-50.	1.9	42
62	Influence of restraint and acute isolation on the selectivity of the adult zebra finch zenk gene response to acoustic stimuli. Behavioural Brain Research, 2002, 136, 185-191.	2.2	31
63	Protein–protein interactions of alpha-synuclein in brain homogenates and transfected cells. Molecular Brain Research, 2001, 95, 138-145.	2.3	88
64	Testosterone regulates α-synuclein mRNA in the avian song system. NeuroReport, 2001, 12, 943-946.	1.2	21
65	Development of song responses in the zebra finch caudomedial neostriatum: Role of genomic and electrophysiological activities. Journal of Neurobiology, 2001, 48, 163-180.	3.6	125
66	Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nature Neuroscience, 2001, 4, 170-175.	14.8	196
67	Exposure to Long Chain Polyunsaturated Fatty Acids Triggers Rapid Multimerization of Synucleins. Journal of Biological Chemistry, 2001, 276, 41958-41962.	3.4	244
68	Interaction of Human α-Synuclein and Parkinson's Disease Variants with Phospholipids. Journal of Biological Chemistry, 2000, 275, 34393-34398.	3.4	384
69	The Genomic Action Potential. Neurobiology of Learning and Memory, 2000, 74, 185-216.	1.9	345
70	Minimal Experience Required for Immediate-Early Gene Induction in Zebra Finch Neostriatum. Neurobiology of Learning and Memory, 2000, 74, 179-184.	1.9	41
71	The neural basis of avian song learning and perception. , 2000, , 113-126.		8
72	Synucleins in synaptic plasticity and neurodegenerative disorders. Journal of Neuroscience Research, 1999, 58, 120-129.	2.9	381

#	Article	IF	CITATIONS
73	Synucleins in synaptic plasticity and neurodegenerative disorders. Journal of Neuroscience Research, 1999, 58, 120-129.	2.9	6
74	The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends in Neurosciences, 1998, 21, 249-254.	8.6	695
75	Stabilization of α-Synuclein Secondary Structure upon Binding to Synthetic Membranes. Journal of Biological Chemistry, 1998, 273, 9443-9449.	3.4	1,376
76	α-SYNUCLEIN IMMUNOREACTIVITY IN LEWY BODIES AND ABNORMAL NEURITES IN PARKINSON'S DISEASE AN DEMENTIA WITH LEWY BODY BRAIN. Journal of Neuropathology and Experimental Neurology, 1998, 57, 509.	ID 1.7	0
77	Nigral and Cortical Lewy Bodies and Dystrophic Nigral Neurites in Parkinson's Disease and Cortical Lewy Body Disease Contain α-synuclein Immunoreactivity. Journal of Neuropathology and Experimental Neurology, 1998, 57, 334-337.	1.7	355
78	Synelfin Regulation during the Critical Period for Song Learning in Normal and Isolated Juvenile Zebra Finches. Neurobiology of Learning and Memory, 1997, 68, 271-284.	1.9	32
79	Localized Changes in Immediate-Early Gene Regulation during Sensory and Motor Learning in Zebra Finches. Neuron, 1997, 19, 1049-1059.	8.1	150
80	Response Modulation in the Zebra Finch Neostriatum: Relationship to Nuclear Gene Regulation. Journal of Neuroscience, 1997, 17, 3883-3893.	3.6	181
81	Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Developmental Brain Research, 1997, 99, 87-94.	1.7	206
82	Role of gene regulation in song circuit development and song learning. Journal of Neurobiology, 1997, 33, 549-571.	3.6	82
83	Role of gene regulation in song circuit development and song learning. Journal of Neurobiology, 1997, 33, 549-571.	3.6	1
84	Characterization of the Precursor Protein of the Non-AÎ ² Component of Senile Plaques (NACP) in the Human Central Nervous System. Journal of Neuropathology and Experimental Neurology, 1996, 55, 889-895.	1.7	185
85	The Non-Amyloid-β Component of Alzheimer's Disease Plaque Amyloid: Comparative Analysis Suggests a Normal Function as a Synaptic Plasticizer. , 1996, , 109-112.		2
86	Differential induction of theZENK gene in the avian forebrain and song control circuit after metrazole-induced depolarization. Journal of Neurobiology, 1995, 26, 145-161.	3.6	71
87	The canary androgen receptor mRNA is localized in the song control nuclei of the brain and is rapidly regulated by testosterone. Journal of Neurobiology, 1995, 26, 213-224.	3.6	67
88	Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene's response to that song in zebra finch telencephalon. Journal of Neuroscience, 1995, 15, 6919-6925.	3.6	257
89	Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron, 1995, 15, 361-372.	8.1	793
90	Correspondence between sites of NGFI-A induction and sites of morphological plasticity following exposure to environmental complexity. Molecular Brain Research, 1995, 32, 211-220.	2.3	94

#	Article	IF	CITATIONS
91	Song-induced ZENK gene expression in auditory pathways of songbird brain and its relation to the song control system. Journal of Neuroscience, 1994, 14, 6652-6666.	3.6	329
92	Immediate-early gene responses in the avian song control system: cloning and expression analysis of the canary c-jun cDNA. Molecular Brain Research, 1994, 27, 299-309.	2.3	48
93	Seasonal and tissue-specific regulation of canary androgen receptor messenger ribonucleic acid. Endocrinology, 1994, 134, 640-649.	2.8	22
94	Song presentation induces gene expression in the songbird forebrain Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6818-6822.	7.1	588
95	Differential regulation in the avian song control circuit of an mRNA predicting a highly conserved protein related to protein kinase C and the bcr oncogene. Molecular Brain Research, 1992, 12, 323-329.	2.3	29
96	Structure and expression of canary myc family genes Molecular and Cellular Biology, 1991, 11, 1770-1776.	2.3	11
97	Forebrain-enriched RNAs of the canary: a population analysis using hybridization kinetics. Molecular Brain Research, 1990, 7, 23-30.	2.3	9
98	In situ hybridization using PEG-embedded tissue and riboprobes: increased cellular detail coupled with high sensitivity Journal of Histochemistry and Cytochemistry, 1989, 37, 389-393.	2.5	35
99	Probes for rare mRNAs reveal distributed cell subsets in canary brain. Neuron, 1988, 1, 249-261.	8.1	54
100	Affinity chromatographic purification of nucleosomes containing transcriptionally active DNA sequences. Journal of Molecular Biology, 1987, 196, 379-388.	4.2	171
101	Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunoglobulin expression Molecular and Cellular Biology, 1986, 6, 3791-3797	2.3	86