
Lin-Bing Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456378/publications.pdf Version: 2024-02-01

LIN-RING SUM

#	Article	IF	CITATIONS
1	Fabrication of adsorbents with enhanced Cul stability: Creating a superhydrophobic microenvironment through grafting octadecylamine. Chinese Journal of Chemical Engineering, 2023, 55, 41-48.	1.7	5
2	Fabrication of Cu+ sites in confined spaces for adsorptive desulfurization by series connection double-solvent strategy. Green Energy and Environment, 2022, 7, 345-351.	4.7	20
3	Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture. Chinese Journal of Chemical Engineering, 2022, 42, 104-111.	1.7	10
4	Rational fabrication of ordered porous solid strong bases by utilizing the inherent reducibility of metal-organic frameworks. Nano Research, 2022, 15, 2905-2912.	5.8	7
5	Causation of catalytic activity of Cu-ZnO for CO2 hydrogenation to methanol. Chemical Engineering Journal, 2022, 430, 132784.	6.6	27
6	Generation of Strong Basicity in Metal–Organic Frameworks: How Do Coordination Solvents Matter?. ACS Applied Materials & Interfaces, 2022, 14, 8058-8065.	4.0	6
7	Exfoliation-induced O-doped g-C ₃ N ₄ nanosheets with improved photoreactivity towards RhB degradation and H ₂ evolution. Inorganic Chemistry Frontiers, 2022, 9, 1423-1433.	3.0	17
8	Fabrication of azobenzene-functionalized porous polymers for selective CO2 capture. Chinese Journal of Chemical Engineering, 2022, 43, 24-30.	1.7	5
9	Stabilizing Cul in MIL-101(Cr) by introducing long-chain alkane for adsorptive desulfurization. Separation and Purification Technology, 2022, 290, 120892.	3.9	16
10	Process-Oriented Smart Adsorbents: Tailoring the Properties Dynamically as Demanded by Adsorption/Desorption. Accounts of Chemical Research, 2022, 55, 75-86.	7.6	25
11	Implementing An "Impracticable―Copolymerization to Fabricate A Desired Polymer Precursor for N-doped Porous Carbons. Engineering, 2022, , .	3.2	5
12	Generating strongly basic sites on magnetic nano-stirring bars: Multifunctional integrated catalysts for transesterification reaction. Science China Materials, 2022, 65, 2721-2728.	3.5	3
13	Selective adsorption of ethane over ethylene through a metal–organic framework bearing dense alkyl groups. Separation and Purification Technology, 2022, 295, 121330.	3.9	9
14	Modulating the Activity of Enzyme in Metal–Organic Frameworks Using the Photothermal Effect of Ti ₃ C ₂ Nanosheets. ACS Applied Materials & Interfaces, 2022, 14, 30090-30098.	4.0	7
15	Porous Mn ₂ O ₃ / <i>p</i> SiO ₂ Nanocomposites on Bio-scaffolds for Tetracycline Degradation. ACS Applied Nano Materials, 2022, 5, 9117-9128.	2.4	15
16	Solitary Medium of a Multifunctional Ionic Liquid for Crystallizing Hierarchically Porous Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10393-10401.	1.9	6
17	Low-temperature conversion of base precursor KNO3 on core–shell structured Fe3O4@C: Fabrication of magnetically responsive solid strong bases. Catalysis Today, 2021, 374, 200-207.	2.2	5
18	Smart adsorbents for CO2 capture: Making strong adsorption sites respond to visible light. Science China Materials, 2021, 64, 383-392.	3.5	14

#	Article	IF	CITATIONS
19	Hybridization with Ti ₃ C ₂ T <i>_x</i> MXene: An Effective Approach to Boost the Hydrothermal Stability and Catalytic Performance of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 1380-1387.	1.9	17
20	Controllable Microporous Framework Isomerism within Continuous Mesoporous Channels: Hierarchically Porous Structure for Capture of Bulky Molecules. Inorganic Chemistry, 2021, 60, 6633-6640.	1.9	5
21	Breathing Metal–Organic Polyhedra Controlled by Light for Carbon Dioxide Capture and Liberation. CCS Chemistry, 2021, 3, 1659-1668.	4.6	28
22	Adjusting accommodation microenvironment for Cu ⁺ to enhance oxidation inhibition for thiophene capture. AICHE Journal, 2021, 67, e17368.	1.8	17
23	Near-infrared light triggered release of ethane from a photothermal metal-organic framework. Chemical Engineering Journal, 2021, 420, 130490.	6.6	17
24	Se/S enhanced room-temperature phosphorescence of organic polymers. Dyes and Pigments, 2021, 195, 109663.	2.0	14
25	The cascade catalysis of the porphyrinic zirconium metal–organic framework PCN-224-Cu for CO ₂ conversion to alcohols. Journal of Materials Chemistry A, 2021, 9, 24510-24516.	5.2	25
26	Construction of a superhydrophobic microenvironment <i>via</i> polystyrene coating: an unexpected way to stabilize Cu ^I against oxidation. Inorganic Chemistry Frontiers, 2021, 8, 5169-5177.	3.0	7
27	Investigation on the Preparation of Rice Straw-Derived Cellulose Acetate and Its Spinnability for Electrospinning. Polymers, 2021, 13, 3463.	2.0	8
28	Controllable fabrication of cuprous sites in confined spaces for efficient adsorptive desulfurization. Fuel, 2020, 259, 116221.	3.4	23
29	MXene Quantum Dot/Polymer Hybrid Structures with Tunable Electrical Conductance and Resistive Switching for Nonvolatile Memory Devices. Advanced Electronic Materials, 2020, 6, 1900493.	2.6	63
30	Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance. Journal of Materials Science, 2020, 55, 2139-2154.	1.7	21
31	Rigid supramolecular structures based on flexible covalent bonds: A fabrication mechanism of porous organic polymers and their CO2 capture properties. Chemical Engineering Journal, 2020, 385, 123978.	6.6	45
32	Phosphorus-containing amorphous pure organic room-temperature phosphorescent materials. European Polymer Journal, 2020, 141, 110072.	2.6	4
33	Controllable CO ₂ Capture in Metal–Organic Frameworks: Making Targeted Active Sites Respond to Light. Industrial & Engineering Chemistry Research, 2020, 59, 21894-21900.	1.8	18
34	Core–Sheath Structured MoO ₃ @MoS ₂ Composite for High-Performance Lithium-Ion Battery Anodes. Energy & Fuels, 2020, 34, 11498-11507.	2.5	18
35	Facile Fabrication of Small-Sized Palladium Nanoparticles in Nanoconfined Spaces for Low-Temperature CO Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 19145-19152.	1.8	8
36	Unusual Copper Oxide Dispersion Achieved by Combining the Confinement Effect and Guest–Host Interaction Modulation. Industrial & Engineering Chemistry Research, 2020, 59, 16296-16304.	1.8	2

#	Article	lF	CITATIONS
37	An antiempirical strategy: sacrificing aromatic moieties in the polymer precursor for improving the properties of the derived N-doped porous carbons. Green Chemical Engineering, 2020, 1, 70-76.	3.3	8
38	Solvent-free synthesis of N-containing polymers with high cross-linking degree to generate N-doped porous carbons for high-efficiency CO2 capture. Chemical Engineering Journal, 2020, 399, 125845.	6.6	42
39	Ce-Doped Smart Adsorbents with Photoresponsive Molecular Switches for Selective Adsorption and Efficient Desorption. Engineering, 2020, 6, 569-576.	3.2	14
40	Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nature Communications, 2020, 11, 3206.	5.8	105
41	Tailoring microenvironment of adsorbents to achieve excellent <scp>CO₂</scp> uptakes from wet gases. AICHE Journal, 2020, 66, e16645.	1.8	16
42	Fabrication of Microporous Metal–Organic Frameworks in Uninterrupted Mesoporous Tunnels: Hierarchical Structure for Efficient Trypsin Immobilization and Stabilization. Angewandte Chemie, 2020, 132, 6490-6496.	1.6	5
43	Fabrication of highly dispersed nickel in nanoconfined spaces of as-made SBA-15 for dry reforming of methane with carbon dioxide. Chemical Engineering Journal, 2020, 390, 124491.	6.6	35
44	Synthesis of mesoporous manganese dioxide/expanded graphite composite and its lithium-storage performance. Bulletin of Materials Science, 2020, 43, 1.	0.8	1
45	Fabrication of Microporous Metal–Organic Frameworks in Uninterrupted Mesoporous Tunnels: Hierarchical Structure for Efficient Trypsin Immobilization and Stabilization. Angewandte Chemie - International Edition, 2020, 59, 6428-6434.	7.2	41
46	Smart Light-responsive CO ₂ Adsorbents for Regulating Strong Active Sites. Acta Chimica Sinica, 2020, 78, 1082.	0.5	7
47	Fabrication of Cu(I)-Functionalized MIL-101(Cr) for Adsorptive Desulfurization: Low-Temperature Controllable Conversion of Cu(II) via Vapor-Induced Reduction. Inorganic Chemistry, 2019, 58, 11085-11090.	1.9	9
48	Frontispiece: Generation of Hierarchical Porosity in Metal–Organic Frameworks by the Modulation of Cation Valence. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
49	Fabrication of solid strong bases at decreased temperature by doping low-valence Cr3+ into supports. Applied Catalysis A: General, 2019, 584, 117153.	2.2	6
50	Fabrication of Photothermal Silver Nanocube/ZIF-8 Composites for Visible-Light-Regulated Release of Propylene. ACS Applied Materials & Interfaces, 2019, 11, 29298-29304.	4.0	16
51	Fabrication of multifunctional integrated catalysts by decorating confined Ag nanoparticles on magnetic nanostirring bars. Journal of Colloid and Interface Science, 2019, 555, 315-322.	5.0	7
52	N-doped porous carbons with increased yield and hierarchical pore structures for supercapacitors derived from an N-containing phenyl-riched copolymer. Journal of Industrial and Engineering Chemistry, 2019, 80, 568-575.	2.9	9
53	Facile Synthesis of Ti ₃ C ₂ T _{<i>x</i>} –Poly(vinylpyrrolidone) Nanocomposites for Nonvolatile Memory Devices with Low Switching Voltage. ACS Applied Materials & Interfaces, 2019, 11, 38061-38067.	4.0	28
54	Facile Synthesis of Co3O4 Nanoparticle-Functionalized Mesoporous SiO2 for Catalytic Degradation of Methylene Blue from Aqueous Solutions. Catalysts, 2019, 9, 809.	1.6	8

#	Article	IF	CITATIONS
55	Making Porous Materials Respond to Visible Light. ACS Energy Letters, 2019, 4, 2656-2667.	8.8	18
56	Metal–Organic Frameworks with Target‧pecific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO ₂ Capture. Angewandte Chemie - International Edition, 2019, 58, 6600-6604.	7.2	161
57	Underlying mechanism of CO ₂ adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO ₂ chiefly through acid–base interaction?. Journal of Materials Chemistry A, 2019, 7, 17842-17853.	5.2	63
58	Foaming Effect of a Polymer Precursor with a Low N Content on Fabrication of N-Doped Porous Carbons for CO ₂ Capture. Industrial & Engineering Chemistry Research, 2019, 58, 11013-11021.	1.8	19
59	Fabrication of nitrogen-doped porous carbons derived from ammoniated copolymer precursor: Record-high adsorption capacity for indole. Chemical Engineering Journal, 2019, 374, 1005-1012.	6.6	24
60	Significant Decrease in Activation Temperature for the Generation of Strong Basicity: A Strategy of Endowing Supports with Reducibility. Inorganic Chemistry, 2019, 58, 8003-8011.	1.9	9
61	Generation of Hierarchical Porosity in Metal–Organic Frameworks by the Modulation of Cation Valence. Angewandte Chemie, 2019, 131, 10210-10215.	1.6	12
62	Generation of Hierarchical Porosity in Metal–Organic Frameworks by the Modulation of Cation Valence. Angewandte Chemie - International Edition, 2019, 58, 10104-10109.	7.2	104
63	Development of High Yielded Sn-Doped Porous Carbons for Selective CO2 Capture. ACS Sustainable Chemistry and Engineering, 2019, 7, 10383-10392.	3.2	4
64	N-doped porous carbons derived from a polymer precursor with a record-high N content: Efficient adsorbents for CO2 capture. Chemical Engineering Journal, 2019, 372, 656-664.	6.6	71
65	Photopolymerization of metal–organic polyhedra: an efficient approach to improve the hydrostability, dispersity, and processability. Chemical Communications, 2019, 55, 6177-6180.	2.2	52
66	Fabrication of N-doped porous carbons for enhanced CO2 capture: Rational design of an ammoniated polymer precursor. Chemical Engineering Journal, 2019, 369, 170-179.	6.6	54
67	Titelbild: Metal–Organic Frameworks with Targetâ€6pecific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO ₂ Capture (Angew. Chem. 20/2019). Angewandte Chemie, 2019, 131, 6525-6525.	1.6	0
68	Maximizing Photoresponsive Efficiency by Isolating Metal–Organic Polyhedra into Confined Nanoscaled Spaces. Journal of the American Chemical Society, 2019, 141, 8221-8227.	6.6	71
69	Metal–Organic Frameworks with Targetâ€6pecific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO ₂ Capture. Angewandte Chemie, 2019, 131, 6672-6676.	1.6	17
70	Frontispiz: Generation of Hierarchical Porosity in Metal–Organic Frameworks by the Modulation of Cation Valence. Angewandte Chemie, 2019, 131, .	1.6	0
71	Enhancing the hydrostability and processability of metal–organic polyhedra by self-polymerization or copolymerization with styrene. Dalton Transactions, 2019, 48, 17153-17157.	1.6	13
72	Fabrication of porous carbons from mesitylene for highly efficient CO2 capture: A rational choice improving the carbon loop. Chemical Engineering Journal, 2019, 361, 945-952.	6.6	72

#	Article	IF	CITATIONS
73	Highly Dispersive Cobalt Oxide Constructed in Confined Space for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2837-2843.	3.2	26
74	Magnetically responsive porous materials for efficient adsorption and desorption processes. Chinese Journal of Chemical Engineering, 2019, 27, 1324-1338.	1.7	15
75	Fabrication of Rhodium Nanoparticles with Reduced Sizes: An Exploration of Confined Spaces. Industrial & Engineering Chemistry Research, 2018, 57, 3561-3566.	1.8	18
76	Controllable Adsorption of CO ₂ on Smart Adsorbents: An Interplay between Amines and Photoresponsive Molecules. Chemistry of Materials, 2018, 30, 3429-3437.	3.2	49
77	Direct Fabrication of Strong Basic Sites on Ordered Nanoporous Materials: Exploring the Possibility of Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 1686-1694.	3.2	30
78	Ultradeep Removal of Moisture in Gases to Parts-per-Billion Levels: The Exploration of Adsorbents. Journal of Physical Chemistry C, 2018, 122, 2840-2847.	1.5	4
79	Size Regulation of Platinum Nanoparticles by Using Confined Spaces for the Low-Temperature Oxidation of Ethylene. Inorganic Chemistry, 2018, 57, 1645-1650.	1.9	37
80	Calcium oxide-modified mesoporous silica loaded onto ferriferrous oxide core: Magnetically responsive mesoporous solid strong base. Journal of Colloid and Interface Science, 2018, 526, 366-373.	5.0	17
81	Incorporation of Cu(<scp>ii</scp>) and its selective reduction to Cu(<scp>i</scp>) within confined spaces: efficient active sites for CO adsorption. Journal of Materials Chemistry A, 2018, 6, 8930-8939.	5.2	42
82	Fabrication of Metal–Organic Frameworks inside Silica Nanopores with Significantly Enhanced Hydrostability and Catalytic Activity. ACS Applied Materials & Interfaces, 2018, 10, 12051-12059.	4.0	57
83	Potassium-incorporated mesoporous carbons: strong solid bases with enhanced catalytic activity and stability. Catalysis Science and Technology, 2018, 8, 2794-2801.	2.1	14
84	Rational Fabrication of Polyethylenimine-Linked Microbeads for Selective CO ₂ Capture. Industrial & Engineering Chemistry Research, 2018, 57, 250-258.	1.8	34
85	Design and fabrication of nanoporous adsorbents for the removal of aromatic sulfur compounds. Journal of Materials Chemistry A, 2018, 6, 23978-24012.	5.2	147
86	Development of Adsorbents for Selective Carbon Capture: Role of Homo- and Cross-Coupling in Conjugated Microporous Polymers and Their Carbonized Derivatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 17419-17426.	3.2	20
87	Controlled Construction of Cu(I) Sites within Confined Spaces via Host–Guest Redox: Highly Efficient Adsorbents for Selective CO Adsorption. ACS Applied Materials & Interfaces, 2018, 10, 40044-40053.	4.0	51
88	Rational Design and Fabrication of Nitrogen-Enriched and Hierarchical Porous Polymers Targeted for Selective Carbon Capture. Industrial & Engineering Chemistry Research, 2018, 57, 12926-12934.	1.8	19
89	Endowing Cu-BTC with Improved Hydrothermal Stability and Catalytic Activity: Hybridization with Natural Clay Attapulgite via Vapor-Induced Crystallization. ACS Sustainable Chemistry and Engineering, 2018, 6, 13217-13225.	3.2	35
90	Hierarchical Nâ€doped carbons from designed Nâ€rich polymer: Adsorbents with a recordâ€high capacity for desulfurization. AICHE Journal, 2018, 64, 3786-3793.	1.8	64

#	Article	IF	CITATIONS
91	Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals. Journal of Membrane Science, 2018, 563, 360-370.	4.1	82
92	Controllable construction of metal–organic polyhedra in confined cavities via in situ site-induced assembly. Journal of Materials Chemistry A, 2017, 5, 5278-5282.	5.2	18
93	Architecture of novel periodic mesoporous organosilicas based on the flexible skeleton of aspartic acid-bridged organosilane. Materials Letters, 2017, 193, 299-304.	1.3	6
94	Correction: Smart adsorbents with reversible photo-regulated molecular switches for selective adsorption and efficient regeneration. Chemical Communications, 2017, 53, 3281-3281.	2.2	0
95	Smart Adsorbents Functionalized with Thermoresponsive Polymers for Selective Adsorption and Energy-Saving Regeneration. Industrial & Engineering Chemistry Research, 2017, 56, 4341-4349.	1.8	19
96	Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 2017, 117, 8129-8176.	23.0	1,230
97	Metal–Organic Frameworkâ€Templated Catalyst: Synergy in Multiple Sites for Catalytic CO ₂ Fixation. ChemSusChem, 2017, 10, 1898-1903.	3.6	91
98	Stepâ€Up Synthesis of Periodic Mesoporous Organosilicas with a Tyrosine Framework and Performance in Horseradish Peroxidase Immobilization. Chemistry - an Asian Journal, 2017, 12, 3162-3171.	1.7	10
99	Fabrication of microporous polymers for selective CO ₂ capture: the significant role of crosslinking and crosslinker length. Journal of Materials Chemistry A, 2017, 5, 23310-23318.	5.2	93
100	Controlled Construction of Supported Cu ⁺ Sites and Their Stabilization in MIL-100(Fe): Efficient Adsorbents for Benzothiophene Capture. ACS Applied Materials & Interfaces, 2017, 9, 29445-29450.	4.0	40
101	Rational design of thermo-responsive adsorbents: demand-oriented active sites for the adsorption of dyes. Chemical Communications, 2017, 53, 9538-9541.	2.2	24
102	Direct Synthesis of Zeolites from a Natural Clay, Attapulgite. ACS Sustainable Chemistry and Engineering, 2017, 5, 6124-6130.	3.2	55
103	Nâ€doped porous carbons for CO ₂ capture: Rational choice of Nâ€containing polymer with high phenyl density as precursor. AICHE Journal, 2017, 63, 1648-1658.	1.8	56
104	Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation. Journal of Hazardous Materials, 2017, 321, 344-352.	6.5	165
105	Synthesis of novel periodic mesoporous organosilicas with large content of lysineâ€bridged organosilane skeleton. Micro and Nano Letters, 2017, 12, 1006-1010.	0.6	0
106	Fabrication of gold nanoparticles in confined spaces using solid-phase reduction: Significant enhancement of dispersion degree and catalytic activity. Chemical Engineering Science, 2017, 158, 216-226.	1.9	36
107	Fabrication of Adsorbents with Thermocontrolled Molecular Gates for Both Selective Adsorption and Efficient Regeneration. Advanced Materials Interfaces, 2016, 3, 1500829.	1.9	21
108	Functionalization of metal–organic frameworks with cuprous sites using vapor-induced selective reduction: efficient adsorbents for deep desulfurization. Green Chemistry, 2016, 18, 3210-3215.	4.6	82

#	Article	IF	CITATIONS
109	Fabrication of Isolated Metal–Organic Polyhedra in Confined Cavities: Adsorbents/Catalysts with Unusual Dispersity and Activity. Journal of the American Chemical Society, 2016, 138, 6099-6102.	6.6	113
110	Core–Shell AgCl@SiO ₂ Nanoparticles: Ag(I)-Based Antibacterial Materials with Enhanced Stability. ACS Sustainable Chemistry and Engineering, 2016, 4, 3268-3275.	3.2	40
111	Nitrogen-Doped Porous Carbons Derived from Carbonization of a Nitrogen-Containing Polymer: Efficient Adsorbents for Selective CO2 Capture. Industrial & Engineering Chemistry Research, 2016, 55, 10916-10925.	1.8	77
112	Smart Adsorbents with Photoregulated Molecular Gates for Both Selective Adsorption and Efficient Regeneration. ACS Applied Materials & amp; Interfaces, 2016, 8, 23404-23411.	4.0	47
113	Smart adsorbents with reversible photo-regulated molecular switches for selective adsorption and efficient regeneration. Chemical Communications, 2016, 52, 11531-11534.	2.2	24
114	Simultaneous fabrication of bifunctional Cu(<scp>i</scp>)/Ce(<scp>iv</scp>) sites in silica nanopores using a guests-redox strategy. RSC Advances, 2016, 6, 70446-70451.	1.7	16
115	Fabrication of nitrogen-doped porous carbons for highly efficient CO ₂ capture: rational choice of a polymer precursor. Journal of Materials Chemistry A, 2016, 4, 17299-17307.	5.2	102
116	Molecular Gates: Fabrication of Adsorbents with Thermocontrolled Molecular Gates for Both Selective Adsorption and Efficient Regeneration (Adv. Mater. Interfaces 11/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
117	Enhanced Hydrothermal Stability and Catalytic Performance of HKUST-1 by Incorporating Carboxyl-Functionalized Attapulgite. ACS Applied Materials & Interfaces, 2016, 8, 16457-16464.	4.0	89
118	Rational synthesis of an exceptionally stable Zn(<scp>ii</scp>) metal–organic framework for the highly selective and sensitive detection of picric acid. Chemical Communications, 2016, 52, 5734-5737.	2.2	253
119	Magnetically Responsive Core–Shell Fe ₃ O ₄ @C Adsorbents for Efficient Capture of Aromatic Sulfur and Nitrogen Compounds. ACS Sustainable Chemistry and Engineering, 2016, 4, 2223-2231.	3.2	51
120	Realizing both selective adsorption and efficient regeneration using adsorbents with photo-regulated molecular gates. Chemical Communications, 2016, 52, 4006-4009.	2.2	19
121	Selective adsorption and efficient regeneration via smart adsorbents possessing thermo-controlled molecular switches. Physical Chemistry Chemical Physics, 2016, 18, 9883-9887.	1.3	31
122	A tandem demetalization–desilication strategy to enhance the porosity of attapulgite for adsorption and catalysis. Chemical Engineering Science, 2016, 141, 184-194.	1.9	39
123	A new redox strategy for low-temperature formation of strong basicity on mesoporous silica. Chemical Communications, 2015, 51, 10058-10061.	2.2	31
124	Design and fabrication of mesoporous heterogeneous basic catalysts. Chemical Society Reviews, 2015, 44, 5092-5147.	18.7	323
125	Low-temperature fabrication of Cu(<scp>i</scp>) sites in zeolites by using a vapor-induced reduction strategy. Journal of Materials Chemistry A, 2015, 3, 12247-12251.	5.2	40
126	Facile fabrication of cost-effective porous polymer networks for highly selective CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 3252-3256.	5.2	96

#	Article	IF	CITATIONS
127	Homogenous Dual-Ligand Zinc Complex Catalysts for Chemical Fixation of CO2 to Propylene Carbonate. Catalysis Letters, 2015, 145, 1673-1682.	1.4	9
128	Enhancing the hydrostability and catalytic performance of metal–organic frameworks by hybridizing with attapulgite, a natural clay. Journal of Materials Chemistry A, 2015, 3, 6998-7005.	5.2	75
129	What Matters to the Adsorptive Desulfurization Performance of Metal - Organic Frameworks?. Journal of Physical Chemistry C, 2015, 119, 21969-21977.	1.5	91
130	Facile Fabrication of AgCl Nanoparticles and Their Application in Adsorptive Desulfurization. Journal of Nanoscience and Nanotechnology, 2015, 15, 4373-4379.	0.9	13
131	Highly Selective Capture of the Greenhouse Gas CO ₂ in Polymers. ACS Sustainable Chemistry and Engineering, 2015, 3, 3077-3085.	3.2	168
132	Editorial (Thematic Issue: Innovative Nanoporous Materials for Heterogeneous Catalysis). Current Organic Chemistry, 2014, 18, 1225-1225.	0.9	6
133	Molecular Template-Directed Synthesis of Microporous Polymer Networks for Highly Selective CO ₂ Capture. ACS Applied Materials & Interfaces, 2014, 6, 20340-20349.	4.0	66
134	Azobenzeneâ€Functionalized Metal–Organic Polyhedra for the Optically Responsive Capture and Release of Guest Molecules. Angewandte Chemie - International Edition, 2014, 53, 5842-5846.	7.2	203
135	Fabrication of magnetically responsive core–shell adsorbents for thiophene capture: AgNO3-functionalized Fe3O4@mesoporous SiO2 microspheres. Journal of Materials Chemistry A, 2014, 2, 4698.	5.2	86
136	Fabrication of solid strong bases with a molecular-level dispersion of lithium sites and high basic catalytic activity. Chemical Communications, 2014, 50, 11299-11302.	2.2	21
137	Template-derived carbon: an unexpected promoter for the creation of strong basicity on mesoporous silica. Chemical Communications, 2014, 50, 11192.	2.2	24
138	Constructing a confined space in silica nanopores: an ideal platform for the formation and dispersion of cuprous sites. Journal of Materials Chemistry A, 2014, 2, 3399.	5.2	91
139	Improving Hydrothermal Stability and Catalytic Activity of Metal–Organic Frameworks by Graphite Oxide Incorporation. Journal of Physical Chemistry C, 2014, 118, 19910-19917.	1.5	100
140	The Dehydration and Demulsification of Waste Oil by Ultrasound. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36, 1843-1849.	1.2	8
141	Preparation of Mesoporous Solid Superbases by Using Metal Oxide Interlayers. Current Organic Chemistry, 2014, 18, 1296-1304.	0.9	14
142	A Highly Active Ni/ZSMâ€5 Catalyst for Complete Hydrogenation of Polymethylbenzenes. ChemCatChem, 2013, 5, 3543-3547.	1.8	45
143	Low-Temperature Fabrication of Mesoporous Solid Strong Bases by Using Multifunction of a Carbon Interlayer. ACS Applied Materials & Interfaces, 2013, 5, 9823-9829.	4.0	58
144	Constructing mesoporous solid superbases by a dualcoating strategy. Journal of Materials Chemistry A, 2013, 1, 1623-1631.	5.2	44

#	Article	IF	CITATIONS
145	Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nature Communications, 2013, 4, 1538.	5.8	508
146	Fabrication of Supported Cuprous Sites at Low Temperatures: An Efficient, Controllable Strategy Using Vapor-Induced Reduction. Journal of the American Chemical Society, 2013, 135, 8137-8140.	6.6	104
147	Ordered Mesoporous Carbon CMK-3 Modified with Cu(I) for Selective Ethylene/Ethane Adsorption. Separation Science and Technology, 2013, 48, 968-976.	1.3	23
148	Low-temperature generation of strong basicity via an unprecedented guest–host redox interaction. Chemical Communications, 2013, 49, 8087.	2.2	46
149	A Water Resistant Solid Superbase Derived from Calcium: Synthesis, Characterization and Catalytic Performance. Current Organic Chemistry, 2013, 17, 2249-2255.	0.9	5
150	Introduction of Functionalized Mesopores to Metal–Organic Frameworks via Metal–Ligand–Fragment Coassembly. Journal of the American Chemical Society, 2012, 134, 20110-20116.	6.6	215
151	Generalized syntheses of mesoporous γ-Al2O3 functionalized with metal oxides by a one-pot, two-step strategy. Journal of Porous Materials, 2012, 19, 969-977.	1.3	8
152	Isolated lithium sites supported on mesoporous silica: a novel solid strong base with high catalytic activity. Chemical Communications, 2012, 48, 6423.	2.2	30
153	Unusual ceria dispersion formed in confined space: a stable and reusable adsorbent for aromatic sulfur capture. Chemical Communications, 2012, 48, 9495.	2.2	72
154	Confinement of Metal–Organic Polyhedra in Silica Nanopores. Journal of the American Chemical Society, 2012, 134, 15923-15928.	6.6	128
155	A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chemical Communications, 2012, 48, 9995.	2.2	242
156	Cooperative Template-Directed Assembly of Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 126-129.	6.6	330
157	Dispersion of copper species in a confined space and their application in thiophene capture. Journal of Materials Chemistry, 2012, 22, 18514.	6.7	90
158	In situ generation of superbasic sites on mesoporous ceria and their application in transesterification. Journal of Molecular Catalysis A, 2012, 352, 38-44.	4.8	34
159	Adsorptive Removal of Thiophene by Cu-Modified Mesoporous Silica MCM-48 Derived from Direct Synthesis. Energy & Fuels, 2011, 25, 3093-3099.	2.5	56
160	Isolated Cu(<scp>i</scp>) sites supported on β-cyclodextrin: an efficient π-complexation adsorbent for thiophene capture. Chemical Communications, 2011, 47, 650-652.	2.2	45
161	Exploring in Situ Functionalization Strategy in a Hard Template Process: Preparation of Sodium-Modified Mesoporous Tetragonal Zirconia with Superbasicity. Journal of Physical Chemistry C, 2011, 115, 11633-11640.	1.5	33
162	Adjusting Host Properties to Promote Cuprous Chloride Dispersion and Adsorptive Desulfurization Sites Formation on SBA-15. Energy & Fuels, 2011, 25, 3506-3513.	2.5	52

#	Article	IF	CITATIONS
163	Cupric bromide-derived complex: An effective homogeneous catalyst for oxidative carbonylation of methanol to dimethyl carbonate. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42, 616-621.	2.7	3
164	Methylation of cyclopentadiene on solid base catalysts with different surface acid–base properties. Journal of Catalysis, 2010, 275, 257-269.	3.1	14
165	Adsorptive Desulfurization by Copper Species within Confined Space. Langmuir, 2010, 26, 17398-17404.	1.6	111
166	Modulating the Host Nature by Coating Alumina: A Strategy to Promote Potassium Nitrate Decomposition and Superbasicity Generation on Mesoporous Silica SBA-15. Journal of Physical Chemistry C, 2010, 114, 18988-18995.	1.5	43
167	Identification of Sulfur- and Nitrogen-containing Organic Species in the Extracts from Pocahontas No. 3 Coal. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 32, 1086-1099.	1.2	13
168	Adsorption separation of carbon dioxide, methane and nitrogen on monoethanol amine modified β-zeolite. Journal of Natural Gas Chemistry, 2009, 18, 167-172.	1.8	115
169	Generating Basic Sites on Zeolite Y by Potassium Species Modification: Effect of Base Precursor. Catalysis Letters, 2009, 132, 218-224.	1.4	25
170	Selective Hydrogen Transfer to Anthracene and Its Derivatives over an Activated Carbon. Energy & Fuels, 2009, 23, 4877-4882.	2.5	24
171	Release of Organonitrogen and Organosulfur Compounds during Hydrotreatment of Pocahontas No. 3 Coal Residue over an Activated Carbon. Energy & Fuels, 2009, 23, 5284-5286.	2.5	20
172	Adsorption Behavior of Carbon Dioxide and Methane on AlPO ₄ -14: A Neutral Molecular Sieve. Energy & Fuels, 2009, 23, 1534-1538.	2.5	33
173	Magnesia-Incorporated Mesoporous Alumina with Crystalline Frameworks: A Solid Strong Base Derived from Direct Synthesis. Journal of Physical Chemistry C, 2009, 113, 19172-19178.	1.5	47
174	Efficient CO ₂ Capturer Derived from As‣ynthesized MCMâ€41 Modified with Amine. Chemistry - A European Journal, 2008, 14, 3442-3451.	1.7	293
175	Oneâ€Pot Synthesis of Potassiumâ€Functionalized Mesoporous γâ€Alumina: A Solid Superbase. Angewandte Chemie - International Edition, 2008, 47, 3418-3421.	7.2	91
176	Multiple Functionalization of Mesoporous Silica in Oneâ€Pot: Direct Synthesis of Aluminumâ€Containing Plugged SBAâ€15 from Aqueous Nitrate Solutions. Advanced Functional Materials, 2008, 18, 82-94.	7.8	63
177	Synthesizing nanocrystal-assembled mesoporous magnesium oxide using cotton fibres as exotemplate. Microporous and Mesoporous Materials, 2008, 111, 314-322.	2.2	47
178	Adjusting the host–guest interaction to promote KNO3 decomposition and strong basicity generation on zeolite NaY. Microporous and Mesoporous Materials, 2008, 116, 498-503.	2.2	19
179	Enhanced blue emission from ZnS–ZnO composites confined in SBA-15. Journal of Luminescence, 2008, 128, 1148-1154.	1.5	4
180	Catalytic performance of porous carbons obtained by chemical activation. Carbon, 2008, 46, 1757-1764.	5.4	34

#	Article	lF	CITATIONS
181	Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group. Microporous and Mesoporous Materials, 2008, 114, 74-81.	2.2	226
182	Adsorption separation of carbon dioxide, methane, and nitrogen on Hβ and Na-exchanged β-zeolite. Journal of Natural Gas Chemistry, 2008, 17, 391-396.	1.8	114
183	Attempt to Generate Strong Basicity on Silica and Titania. Journal of Physical Chemistry C, 2008, 112, 4978-4985.	1.5	47
184	New Attempt at Directly Generating Superbasicity on Mesoporous Silica SBA-15. Inorganic Chemistry, 2008, 47, 4199-4208.	1.9	79
185	Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite. Journal of Materials Chemistry, 2008, 18, 2044.	6.7	68
186	Cuâ^'Ce Bimetal Ion-Exchanged Y Zeolites for Selective Adsorption of Thiophenic Sulfur. Energy & Fuels, 2008, 22, 3955-3959.	2.5	81
187	Identification of Organic Chlorines and Iodines in the Extracts from Hydrotreated Argonne Premium Coal Residues. Energy & Fuels, 2007, 21, 2238-2239.	2.5	28
188	A new strategy to generate strong basic sites on neutral salt KNO3 modified NaY. Materials Letters, 2007, 61, 2130-2134.	1.3	20
189	Generating Superbasic Sites on Mesoporous Silica SBA-15. Chemistry of Materials, 2006, 18, 4600-4608.	3.2	78
190	Catalytic Performance of Supported KNO3 Solid Bases for Methylation of Cyclopentadiene. Chinese Journal of Catalysis, 2006, 27, 725-731.	6.9	16
191	Activated Carbon-Catalyzed Hydrogen Transfer to α,ï‰-Diarylalkanes. Energy & Fuels, 2005, 19, 1-6.	2.5	22
192	Thermal Release and Catalytic Removal of Organic Sulfur Compounds from Upper Freeport Coal. Energy & Fuels, 2005, 19, 339-342.	2.5	21
193	Activated Carbon-Catalyzed Hydrogenation of Polycyclic Arenes. Energy & Fuels, 2004, 18, 1500-1504.	2.5	30
194	Synergic Effect of Sulfur on Activated Carbon-Catalyzed Hydrocracking of Di(1-naphthyl)methane. Energy & Fuels, 2003, 17, 60-61.	2.5	26