Diego Carou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Investigation on the Effect of Carbon Fiber Reinforcements in the Mechanical Resistance of 3D Printed Specimens. Applied Composite Materials, 2022, 29, 937-952.	1.3	5
2	The impact of the COVID-19 crisis on the US airline market: Are current business models equipped for upcoming changes in the air transport sector?. Case Studies on Transport Policy, 2022, 10, 647-656.	1.1	20
3	A Note on Big Data and Value Creation. Management and Industrial Engineering, 2022, , 1-18.	0.3	1
4	Experimental Study on the Manufacturing of Steel Inclined Walls by Directed Energy Deposition Based on Dimensional and 3D Surface Roughness Measurements. Materials, 2022, 15, 4994.	1.3	4
5	Statistical models for the mechanical properties of 3D printed external medical aids. Rapid Prototyping Journal, 2021, 27, 176-186.	1.6	9
6	The Aerospace Sector. SpringerBriefs in Applied Sciences and Technology, 2021, , 9-16.	0.2	0
7	The Impact of the COVID-19 Pandemic. SpringerBriefs in Applied Sciences and Technology, 2021, , 47-49.	0.2	0
8	Aerospace Transformation through Industry 4.0 Technologies. SpringerBriefs in Applied Sciences and Technology, 2021, , 17-46.	0.2	3
9	On surface quality of engineered parts manufactured by additive manufacturing and postfinishing by machining. , 2021, , 369-394.		5
10	Efficiency and Sustainability Analysis of the Repair and Maintenance Operations of UNS M11917 Magnesium Alloy Parts of the Aeronautical Industry Made by Intermittent Facing. Metals, 2021, 11, 1035.	1.0	0
11	Machining characteristics based life cycle assessment in eco-benign turning of pure titanium alloy. Journal of Cleaner Production, 2020, 251, 119598.	4.6	69
12	Current advances in additive manufacturing. Procedia CIRP, 2020, 88, 439-444.	1.0	65
13	The Role of Surfactant Structure on the Development of a Sustainable and Effective Cutting Fluid for Machining Titanium Alloys. Metals, 2020, 10, 1388.	1.0	12
14	Enhancing Productivity by Means of High Feed Rate in the Drilling of Al 2011 Aluminium Alloy. Arabian Journal for Science and Engineering, 2019, 44, 8035-8042.	1.7	3
15	Machining of a biomaterial with dual negative tool geometry. , 2019, , 117-128.		0
16	Investigation of surface integrity induced on AZ31C magnesium alloy turned under cryogenic and dry conditions. Procedia Manufacturing, 2019, 41, 476-483.	1.9	32
17	Analysis of the latest trends in hybrid components of lightweight materials for structural uses. Procedia Manufacturing, 2019, 41, 1047-1054.	1.9	10
18	How to use and compare interpolation schemes in Fused Deposition Modeling. Procedia Manufacturing, 2019, 41, 343-350.	1.9	3

DIEGO CAROU

#	Article	IF	CITATIONS
19	Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. Journal of Cleaner Production, 2019, 210, 121-133.	4.6	165
20	Facing the challenges of the food industry: Might additive manufacturing be the answer?. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 1902-1906.	1.5	20
21	Force Prediction for Incremental Forming of Polymer Sheets. Materials, 2018, 11, 1597.	1.3	21
22	A novel method for the determination of fatty acid esters in aqueous emulsion on Ti6Al4V surface with IRRAS and carbon quantification. Tribology International, 2018, 128, 155-160.	3.0	4
23	Surface Quality Enhancement of Fused Deposition Modeling (FDM) Printed Samples Based on the Selection of Critical Printing Parameters. Materials, 2018, 11, 1382.	1.3	143
24	Thermal analysis during turning of AZ31 magnesium alloy under dry and cryogenic conditions. International Journal of Advanced Manufacturing Technology, 2017, 91, 2855-2868.	1.5	127
25	Technical, Economic and Environmental Review of the Lubrication/Cooling Systems Used in Machining Processes. Procedia Engineering, 2017, 184, 99-116.	1.2	164
26	Experimental study for the effective and sustainable repair and maintenance of bars made of Ti-6Al-4V alloy. Application to the aeronautic industry. Journal of Cleaner Production, 2017, 164, 465-475.	4.6	25
27	Sustainable Turning of the Ti-6Al-4V alloy at Low Feed Rates: Surface Quality Assessment. Procedia Manufacturing, 2017, 8, 769-774.	1.9	6
28	Study Based on Sound Monitoring as a Means for Superficial Quality Control in Intermittent Turning of Magnesium Workpieces. Procedia CIRP, 2017, 62, 262-268.	1.0	10
29	Latest advances in the micro-milling of titanium alloys: a review. Procedia Manufacturing, 2017, 13, 275-282.	1.9	15
30	Residual stresses evaluation in precision milling of hardened steel based on the deflection-electrochemical etching technique. Robotics and Computer-Integrated Manufacturing, 2017, 47, 112-116.	6.1	16
31	The effect of minimum quantity lubrication in the intermittent turning of magnesium based on vibration signals. Measurement: Journal of the International Measurement Confederation, 2016, 94, 338-343.	2.5	45
32	Analysis of the hard turning of AISI H13 steel with ceramic tools based on tool geometry: surface roughness, tool wear and their relation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2016, 38, 2413-2420.	0.8	36
33	Surface Roughness Investigation in the Hard Turning of Steel Using Ceramic Tools. Materials and Manufacturing Processes, 2016, 31, 648-652.	2.7	49
34	Comparative study of the performance of diamond-coated drills on the delamination in drilling of carbon fiber reinforced plastics: Assessing the influence of the temperature of the drill. Journal of Composite Materials, 2016, 50, 179-189.	1.2	20
35	A note on the use of the minimum quantity lubrication (MQL) system in turning. Industrial Lubrication and Tribology, 2015, 67, 256-261.	0.6	46
36	Analysis of ignition risk in intermittent turning of UNS M11917 magnesium alloy at low cutting speeds based on the chip morphology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229, 365-371.	1.5	25

DIEGO CAROU

#	Article	IF	CITATIONS
37	Specific cutting energy employed to study the influence of the grain size in the micro-milling of the hardened AISI H13 steel. International Journal of Advanced Manufacturing Technology, 2015, 81, 1591-1599.	1.5	15
38	Machinability of Magnesium and Its Alloys: A Review. Materials Forming, Machining and Tribology, 2015, , 133-152.	0.7	14
39	Insights for the Selection of the Machining Parameters in the Turning of Difficult-To-Cut Coatings. Manufacturing Technology, 2015, 15, 295-303.	0.2	3
40	Experimental investigation on finish intermittent turning of UNS M11917 magnesium alloy under dry machining. International Journal of Advanced Manufacturing Technology, 2014, 75, 1417-1429.	1.5	39
41	Experimental investigation on surface finish during intermittent turning of UNS M11917 magnesium alloy under dry and near dry machining conditions. Measurement: Journal of the International Measurement Confederation, 2014, 56, 136-154.	2.5	55
42	Comparative analysis of sustainable cooling systems in intermittent turning of magnesium pieces. International Journal of Precision Engineering and Manufacturing, 2014, 15, 929-940.	1.1	40
43	Experimental study of the dry facing of magnesium pieces based on the surface roughness. International Journal of Precision Engineering and Manufacturing, 2013, 14, 995-1001.	1.1	26
44	Inserts Selection for Intermittent Turning of Magnesium Pieces. Applied Mechanics and Materials, 2012, 217-219, 1581-1591.	0.2	7
45	Analysis of Main Optimization Techniques in Predicting Surface Roughness in Metal Cutting Processes. Applied Mechanics and Materials, 2012, 217-219, 2171-2182.	0.2	6
46	Surface Roughness Analysis of Magnesium Pieces Obtained by Intermittent Turning. Materials Science Forum, 0, 773-774, 377-391.	0.3	5
47	Enabling Technologies for the Successful Deployment of Industry 4.0. , 0, , .		8