
Elio Scarpini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456325/publications.pdf Version: 2024-02-01

FUO SCADDINI

#	Article	IF	CITATIONS
1	A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain, 2022, 145, 1805-1817.	7.6	27
2	Stratifying the Presymptomatic Phase of Genetic Frontotemporal Dementia by Serum <scp>NfL</scp> and <scp>pNfH</scp> : A Longitudinal Multicentre Study. Annals of Neurology, 2022, 91, 33-47.	5.3	21
3	Cognitive composites for genetic frontotemporal dementia: GENFI-Cog. Alzheimer's Research and Therapy, 2022, 14, 10.	6.2	4
4	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	2.4	2
5	Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia. Alzheimer's and Dementia, 2022, 18, 1408-1423.	0.8	24
6	Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiology of Aging, 2022, , .	3.1	1
7	Alterations of the miR-126-3p/POU2AF1/Spi-B Axis and JCPyV Reactivation in Multiple Sclerosis Patients Receiving Natalizumab. Frontiers in Neurology, 2022, 13, 819911.	2.4	4
8	The <scp>CBIâ€R</scp> detects early behavioural impairment in genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2022, 9, 644-658.	3.7	1
9	Association of rs3027178 polymorphism in the circadian clock gene PER1 with susceptibility to Alzheimer's disease and longevity in an Italian population. GeroScience, 2022, 44, 881-896.	4.6	6
10	miR-150-5p and let-7b-5p in Blood Myeloid Extracellular Vesicles Track Cognitive Symptoms in Patients with Multiple Sclerosis. Cells, 2022, 11, 1551.	4.1	8
11	Role of Chitinase 3–like 1 as a Biomarker in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	17
12	Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia. Alzheimer's and Dementia, 2021, 17, 500-514.	0.8	36
13	White Matter Hyperintensities Are No Major Confounder for Alzheimer's Disease Cerebrospinal Fluid Biomarkers. Journal of Alzheimer's Disease, 2021, 79, 163-175.	2.6	5
14	Impairment of episodic memory in genetic frontotemporal dementia: A GENFI study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2021, 13, e12185.	2.4	11
15	Disruption of brainstem monoaminergic fibre tracts in multiple sclerosis as a putative mechanism for cognitive fatigue: a fixel-based analysis. NeuroImage: Clinical, 2021, 30, 102587.	2.7	26
16	Detection of the SQSTM1 Mutation in a Patient with Early-Onset Hippocampal Amnestic Syndrome. Journal of Alzheimer's Disease, 2021, 79, 477-481.	2.6	2
17	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	5.9	42
18	Diogenes syndrome in dementia: a case report. BJPsych Open, 2021, 7, e43.	0.7	0

#	Article	IF	CITATIONS
19	Analysis of C9orf72 Intermediate Alleles in a Retrospective Cohort of Neurological Patients: Risk Factors for Alzheimer's Disease?. Journal of Alzheimer's Disease, 2021, 81, 1445-1451.	2.6	6
20	Gene Expression Imputation Across Multiple Tissue Types Provides Insight Into the Genetic Architecture of Frontotemporal Dementia and Its Clinical Subtypes. Biological Psychiatry, 2021, 89, 825-835.	1.3	10
21	The distinct roles of monoamines in multiple sclerosis: A bridge between the immune and nervous systems?. Brain, Behavior, and Immunity, 2021, 94, 381-391.	4.1	22
22	The Revised Self-Monitoring Scale detects early impairment of social cognition in genetic frontotemporal dementia within the GENFI cohort. Alzheimer's Research and Therapy, 2021, 13, 127.	6.2	12
23	Extracellular Vesicles in Multiple Sclerosis: Role in the Pathogenesis and Potential Usefulness as Biomarkers and Therapeutic Tools. Cells, 2021, 10, 1733.	4.1	18
24	Role of Oxidative Damage in Alzheimer's Disease and Neurodegeneration: From Pathogenic Mechanisms to Biomarker Discovery. Antioxidants, 2021, 10, 1353.	5.1	57
25	Spontaneous ARIA-like Events in Cerebral Amyloid Angiopathy–Related Inflammation. Neurology, 2021, 97, e1809-e1822.	1.1	61
26	Niemann-Pick Type C 1 (NPC1) and NPC2 Gene Variability in Demented Patients with Evidence of Brain Amyloid Deposition. Journal of Alzheimer's Disease, 2021, 83, 1313-1323.	2.6	5
27	In vivo evidence of functional disconnection between brainstem monoaminergic nuclei and brain networks in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 56, 103224.	2.0	4
28	Differential early subcortical involvement in genetic FTD within the GENFI cohort. NeuroImage: Clinical, 2021, 30, 102646.	2.7	28
29	Disease-related cortical thinning in presymptomatic granulin mutation carriers. Neurolmage: Clinical, 2021, 29, 102540.	2.7	8
30	A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Molecular Neurodegeneration, 2021, 16, 79.	10.8	9
31	C9ORF72 hexanucleotide repeat expansion frequency in patients with Paget's disease of bone. Neurobiology of Aging, 2020, 85, 154.e1-154.e3.	3.1	4
32	Role for ATXN1, ATXN2, and HTT intermediate repeats in frontotemporal dementia and Alzheimer's disease. Neurobiology of Aging, 2020, 87, 139.e1-139.e7.	3.1	35
33	Low CSF β-amyloid levels predict early regional grey matter atrophy in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 39, 101899.	2.0	5
34	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
35	CSF β-amyloid predicts early cerebellar atrophy and is associated with a poor prognosis in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2020, 37, 101462.	2.0	5
36	Parieto-occipital sulcus widening differentiates posterior cortical atrophy from typical Alzheimer disease. NeuroImage: Clinical, 2020, 28, 102453.	2.7	11

#	Article	IF	CITATIONS
37	Mendelian randomization implies no direct causal association between leukocyte telomere length and amyotrophic lateral sclerosis. Scientific Reports, 2020, 10, 12184.	3.3	4
38	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.1	7
39	The Role of Amyloid-β in White Matter Damage: Possible Common Pathogenetic Mechanisms in Neurodegenerative and Demyelinating Diseases. Journal of Alzheimer's Disease, 2020, 78, 13-22.	2.6	15
40	MiRNA Profiling in Plasma Neural-Derived Small Extracellular Vesicles from Patients with Alzheimer's Disease. Cells, 2020, 9, 1443.	4.1	60
41	IL-33 and its decoy sST2 in patients with Alzheimer's disease and mild cognitive impairment. Journal of Neuroinflammation, 2020, 17, 174.	7.2	36
42	Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain, 2020, 143, 1632-1650.	7.6	158
43	Evidence of retinal anterograde neurodegeneration in the very early stages of multiple sclerosis: a longitudinal OCT study. Neurological Sciences, 2020, 41, 3175-3183.	1.9	16
44	A Critical Review on Structural Neuroimaging Studies in BD: a Transdiagnostic Perspective from Psychosis to Fronto-Temporal Dementia. Current Behavioral Neuroscience Reports, 2020, 7, 86-95.	1.3	3
45	Faster Cortical Thinning and Surface Area Loss in Presymptomatic and Symptomatic <i>C9orf72</i> Repeat Expansion Adult Carriers. Annals of Neurology, 2020, 88, 113-122.	5.3	19
46	Frontotemporal Dementia: Correlations Between Psychiatric Symptoms and Pathology. Annals of Neurology, 2020, 87, 950-961.	5.3	30
47	Case Report: Efficacy of Rituximab in a Patient With Familial Mediterranean Fever and Multiple Sclerosis. Frontiers in Neurology, 2020, 11, 591395.	2.4	4
48	Social cognition impairment in genetic frontotemporal dementia within the GENFI cohort. Cortex, 2020, 133, 384-398.	2.4	26
49	CSF Î ² -amyloid predicts prognosis in patients with multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1223-1231.	3.0	19
50	The Neuroanatomy of Somatoform Disorders: A Magnetic Resonance Imaging Study. Psychosomatics, 2019, 60, 278-288.	2.5	12
51	Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurology, The, 2019, 18, 1103-1111.	10.2	128
52	Monozygotic Twins with Frontotemporal Dementia Due To Thr272fs GRN Mutation Discordant for Age At Onset. Journal of Alzheimer's Disease, 2019, 67, 1173-1179.	2.6	4
53	The inner fluctuations of the brain in presymptomatic Frontotemporal Dementia: The chronnectome fingerprint. NeuroImage, 2019, 189, 645-654.	4.2	33
54	Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 997-1004.	1.9	19

#	Article	IF	CITATIONS
55	Timely Detection of Mild Cognitive Impairment in Italy: An Expert Opinion. Journal of Alzheimer's Disease, 2019, 68, 1401-1414.	2.6	11
56	Exploring the role of BDNF DNA methylation and hydroxymethylation in patients with obsessive compulsive disorder. Journal of Psychiatric Research, 2019, 114, 17-23.	3.1	29
57	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
58	White matter hyperintensities in progranulin-associated frontotemporal dementia: A longitudinal GENFI study. Neurolmage: Clinical, 2019, 24, 102077.	2.7	27
59	Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: Initial application to the GENFI cohort. NeuroImage, 2019, 188, 282-290.	4.2	16
60	Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia. Neurobiology of Aging, 2019, 77, 169-177.	3.1	47
61	Amyloid PET as a marker of normal-appearing white matter early damage in multiple sclerosis: correlation with CSF β-amyloid levels and brain volumes. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 280-287.	6.4	28
62	Structural and metabolic cerebral alterations between elderly bipolar disorder and behavioural variant frontotemporal dementia: A combined MRI-PET study. Australian and New Zealand Journal of Psychiatry, 2019, 53, 413-423.	2.3	18
63	The loss of macular ganglion cells begins from the early stages of disease and correlates with brain atrophy in multiple sclerosis patients. Multiple Sclerosis Journal, 2019, 25, 31-38.	3.0	39
64	Poly(GP), neurofilament and grey matter deficits in <i>C9orf72</i> expansion carriers. Annals of Clinical and Translational Neurology, 2018, 5, 583-597.	3.7	48
65	FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort. NeuroImage: Clinical, 2018, 18, 167-177.	2.7	108
66	Profiling of Specific Gene Expression Pathways in Peripheral Cells from Prodromal Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2018, 61, 1289-1294.	2.6	2
67	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
68	Role of Genetics and Epigenetics in the Pathogenesis of Alzheimer's Disease and Frontotemporal Dementia. Journal of Alzheimer's Disease, 2018, 62, 913-932.	2.6	54
69	CSF β-amyloid and white matter damage: a new perspective on Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 352-357.	1.9	36
70	Patterns of gray matter atrophy in genetic frontotemporal dementia: results from the GENFI study. Neurobiology of Aging, 2018, 62, 191-196.	3.1	151
71	Regulation of gene transcription in bipolar disorders: Role of DNA methylation in the relationship between prodynorphin and brain derived neurotrophic factor. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 82, 314-321.	4.8	26
72	Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiology of Aging, 2018, 62, 245.e9-245.e12.	3.1	40

#	Article	IF	CITATIONS
73	Intensive versus standard lowering of blood pressure in the acute phase of intracranial haemorrhage: a systematic review and meta-analysis. Internal and Emergency Medicine, 2018, 13, 95-105.	2.0	4
74	Behavioral and Neurophysiological Effects of Transcranial Direct Current Stimulation (tDCS) in Fronto-Temporal Dementia. Frontiers in Behavioral Neuroscience, 2018, 12, 235.	2.0	19
75	A C6orf10/LOC101929163 locus is associated with age of onset in C9orf72 carriers. Brain, 2018, 141, 2895-2907.	7.6	39
76	CSF pro-orexin and amyloid-Î ² 38 expression in Alzheimer's disease and frontotemporal dementia. Neurobiology of Aging, 2018, 72, 171-176.	3.1	25
77	LncRNAs expression profile in peripheral blood mononuclear cells from multiple sclerosis patients. Journal of Neuroimmunology, 2018, 324, 129-135.	2.3	37
78	Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia. Expert Review of Neurotherapeutics, 2018, 18, 469-475.	2.8	6
79	PICALM Gene Methylation in Blood of Alzheimer's Disease Patients Is Associated with Cognitive Decline. Journal of Alzheimer's Disease, 2018, 65, 283-292.	2.6	18
80	Distinct patterns of brain atrophy in Genetic Frontotemporal Dementia Initiative (GENFI) cohort revealed by visual rating scales. Alzheimer's Research and Therapy, 2018, 10, 46.	6.2	34
81	Presymptomatic white matter integrity loss in familial frontotemporal dementia in the <scp>GENFI</scp> cohort: A crossâ€sectional diffusion tensor imaging study. Annals of Clinical and Translational Neurology, 2018, 5, 1025-1036.	3.7	39
82	Comparison of β 2-microglobulin serum level between Alzheimer's patients, cognitive healthy and mild cognitive impaired individuals. Biomarkers, 2018, 23, 603-608.	1.9	20
83	Progranulin as a therapeutic target for dementia. Expert Opinion on Therapeutic Targets, 2018, 22, 579-585.	3.4	17
84	Improved Cerebrospinal Fluid-Based Discrimination between Alzheimer's Disease Patients and Controls after Correction for Ventricular Volumes. Journal of Alzheimer's Disease, 2017, 56, 543-555.	2.6	10
85	Effects of Multiple Genetic Loci on Age atÂOnset in Frontotemporal Dementia. Journal of Alzheimer's Disease, 2017, 56, 1271-1278.	2.6	4
86	Recognition of viral and self-antigens by T H 1 and T H 1/T H 17 central memory cells in patients with multiple sclerosis reveals distinct roles in immune surveillance and relapses. Journal of Allergy and Clinical Immunology, 2017, 140, 797-808.	2.9	59
87	Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study. Brain, 2017, 140, 1784-1791.	7.6	55
88	The Enigmatic Role of Viruses in Multiple Sclerosis: Molecular Mimicry or Disturbed Immune Surveillance?. Trends in Immunology, 2017, 38, 498-512.	6.8	56
89	White matter hyperintensities are seen only in GRN mutation carriers in the GENFI cohort. NeuroImage: Clinical, 2017, 15, 171-180.	2.7	63
90	Pharmacological Management of Psychiatric Symptoms in Frontotemporal Dementia: A Systematic Review. Journal of Geriatric Psychiatry and Neurology, 2017, 30, 162-169.	2.3	23

#	Article	IF	CITATIONS
91	Self-Awareness for Memory Impairment in Amnestic Mild Cognitive Impairment: A Longitudinal Study. American Journal of Alzheimer's Disease and Other Dementias, 2017, 32, 401-407.	1.9	4
92	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
93	Evidence of CNS β-amyloid deposition in Nasu-Hakola disease due to the <i>TREM2</i> Q33X mutation. Neurology, 2017, 89, 2503-2505.	1.1	26
94	Word and Picture Version of the Free and Cued Selective Reminding Test (FCSRT): Is There Any Difference?. Journal of Alzheimer's Disease, 2017, 61, 47-52.	2.6	8
95	CSF β-amyloid as a putative biomarker of disease progression in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1085-1091.	3.0	33
96	Rapidly progressive primary progressive aphasia and parkinsonism with novel <i>GRN</i> mutation. Movement Disorders, 2017, 32, 476-478.	3.9	6
97	Pioglitazone for the treatment of Alzheimer's disease. Expert Opinion on Investigational Drugs, 2017, 26, 97-101.	4.1	85
98	Alzheimer's Disease Diagnosis: Discrepancy between Clinical, Neuroimaging, and Cerebrospinal Fluid Biomarkers Criteria in an Italian Cohort of Geriatric Outpatients: A Retrospective Cross-sectional Study. Frontiers in Medicine, 2017, 4, 203.	2.6	8
99	PRNP P39L Variant is a Rare Cause ofÂFrontotemporal Dementia in Italian Population. Journal of Alzheimer's Disease, 2016, 50, 353-357.	2.6	15
100	Transcranial Direct Current Stimulation Modulates Cortical Neuronal Activity in Alzheimer's Disease. Frontiers in Neuroscience, 2016, 10, 134.	2.8	66
101	Plasma Screening for Progranulin Mutations in Patients with Progressive Supranuclear Palsy and Corticobasal Syndromes. Journal of Alzheimer's Disease, 2016, 53, 445-449.	2.6	3
102	Growth Arrest Specific 6 Concentration is Increased in the Cerebrospinal Fluid of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 55, 59-65.	2.6	41
103	Reversible Mild Cognitive Impairment: The Role of Comorbidities at Baseline Evaluation. Journal of Alzheimer's Disease, 2016, 51, 57-67.	2.6	28
104	CHRNA7 Gene and Response to Cholinesterase Inhibitors in an Italian Cohort of Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2016, 52, 1203-1208.	2.6	18
105	Genetic Counseling and Testing for Alzheimer's Disease and Frontotemporal Lobar Degeneration: An Italian Consensus Protocol. Journal of Alzheimer's Disease, 2016, 51, 277-291.	2.6	18
106	Genetic risk factors for the posterior cortical atrophy variant of Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 862-871.	0.8	93
107	Effect of fingolimod treatment on circulating miR-15b, miR23a and miR-223 levels in patients with multiple sclerosis. Journal of Neuroimmunology, 2016, 299, 81-83.	2.3	39
108	Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2016, 3, 623-636.	3.7	207

#	Article	IF	CITATIONS
109	Old and new acetylcholinesterase inhibitors for Alzheimer's disease. Expert Opinion on Investigational Drugs, 2016, 25, 1181-1187.	4.1	86
110	Body Mass Index Predicts Progression of Mild Cognitive Impairment to Dementia. Dementia and Geriatric Cognitive Disorders, 2016, 41, 172-180.	1.5	33
111	Non Fluent Variant of Primary Progressive Aphasia Due to the Novel GRN g.9543delA(IVS3-2delA) Mutation. Journal of Alzheimer's Disease, 2016, 54, 717-721.	2.6	7
112	Progranulin genetic polymorphisms influence progression of disability and relapse recovery in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1007-1012.	3.0	12
113	Emerging amyloid disease-modifying drugs for Alzheimer's disease. Expert Opinion on Emerging Drugs, 2016, 21, 5-7.	2.4	10
114	Iron in Frontotemporal Lobar Degeneration: A New Subcortical Pathological Pathway?. Neurodegenerative Diseases, 2016, 16, 172-178.	1.4	19
115	Gene promoter methylation and expression of Pin1 differ between patients with frontotemporal dementia and Alzheimer's disease. Journal of the Neurological Sciences, 2016, 362, 283-286.	0.6	22
116	Weight Loss Predicts Progression of Mild Cognitive Impairment to Alzheimer's Disease. PLoS ONE, 2016, 11, e0151710.	2.5	76
117	SORL1 Gene is Associated with the Conversion from Mild Cognitive Impairment to Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 46, 771-776.	2.6	14
118	Frontotemporal Lobar Degeneration. , 2015, , 57-66.		2
119	Idalopirdine as a treatment for Alzheimer's disease. Expert Opinion on Investigational Drugs, 2015, 24, 981-987.	4.1	16
120	Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay. Molecular Neurodegeneration, 2015, 10, 64.	10.8	121
121	Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurology, The, 2015, 14, 253-262.	10.2	432
122	Balò's concentric sclerosis: still to be considered as a variant of multiple sclerosis?. Neurological Sciences, 2015, 36, 2277-2280.	1.9	7
123	Profiling of Ubiquitination Pathway Genes in Peripheral Cells from Patients with Frontotemporal Dementia due to C9ORF72 and GRN Mutations. International Journal of Molecular Sciences, 2015, 16, 1385-1394.	4.1	14
124	A genome-wide screening and SNPs-to-genes approach to identify novel genetic risk factors associated with frontotemporal dementia. Neurobiology of Aging, 2015, 36, 2904.e13-2904.e26.	3.1	48
125	Tolerability and Safety of Souvenaid in Patients with Mild Alzheimer's Disease: Results of Multi-Center, 24-Week, Open-Label Extension Study. Journal of Alzheimer's Disease, 2015, 44, 471-480.	2.6	44
126	Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain, 2015, 138, 918-931.	7.6	147

#	Article	IF	CITATIONS
127	Csf p-tau ₁₈₁ /tau ratio as biomarker for TDP pathology in frontotemporal dementia. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 86-91.	1.7	65
128	Psychiatric Symptoms in Frontotemporal Dementia: Epidemiology, Phenotypes, and Differential Diagnosis. Biological Psychiatry, 2015, 78, 684-692.	1.3	73
129	The Novel GRN g.1159_1160delTG Mutation is Associated with Behavioral Variant Frontotemporal Dementia. Journal of Alzheimer's Disease, 2015, 44, 277-282.	2.6	7
130	Usefulness of Multi-Parametric MRI for the Investigation of Posterior Cortical Atrophy. PLoS ONE, 2015, 10, e0140639.	2.5	4
131	Incomplete Penetrance of the C9ORF72 Hexanucleotide Repeat Expansions: Frequency in a Cohort of Geriatric Non-Demented Subjects. Journal of Alzheimer's Disease, 2014, 39, 19-22.	2.6	27
132	Partial recovery after severe immune reconstitution inflammatory syndrome in a multiple sclerosis patient with progressive multifocal leukoencephalopathy. Immunotherapy, 2014, 6, 23-28.	2.0	3
133	Physical Activity Reduces the Risk of Dementia in Mild Cognitive Impairment Subjects: A Cohort Study. Journal of Alzheimer's Disease, 2014, 39, 833-839.	2.6	71
134	<i>C9ORF72</i> hexanucleotide repeat expansion as a rare cause of bipolar disorder. Bipolar Disorders, 2014, 16, 448-449.	1.9	32
135	Is HCRTR2 a Genetic Risk Factor for Alzheimer's Disease?. Dementia and Geriatric Cognitive Disorders, 2014, 38, 245-253.	1.5	18
136	Progranulin gene variability influences the risk for bipolar I disorder, but not bipolar II disorder. Bipolar Disorders, 2014, 16, 769-772.	1.9	19
137	Detection of Misfolded Aβ Oligomers for Sensitive Biochemical Diagnosis of Alzheimer's Disease. Cell Reports, 2014, 7, 261-268.	6.4	154
138	Brain temperature in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 894-896.	3.0	3
139	Innate Immune System and Inflammation in Alzheimer's Disease: From Pathogenesis to Treatment. NeuroImmunoModulation, 2014, 21, 79-87.	1.8	74
140	Circulating miRNAs as Potential Biomarkers in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 1261-1267.	2.6	188
141	Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurology, The, 2014, 13, 686-699.	10.2	302
142	Heterozygous TREM2 mutations in frontotemporal dementia. Neurobiology of Aging, 2014, 35, 934.e10.	3.1	134
143	Transcranial direct current stimulation (tDCS) for fatigue in multiple sclerosis. NeuroRehabilitation, 2014, 34, 121-127.	1.3	126
144	Defining the association of TMEM106B variants among frontotemporal lobar degeneration patients with GRN mutations and C9orf72 repeat expansions. Neurobiology of Aging, 2014, 35, 2658.e1-2658.e5.	3.1	33

#	Article	IF	CITATIONS
145	The C9ORF72 hexanucleotide repeat expansion is a rare cause of schizophrenia. Neurobiology of Aging, 2014, 35, 1214.e7-1214.e10.	3.1	49
146	C9ORF72 repeat expansion not detected in patients with multiple sclerosis. Neurobiology of Aging, 2014, 35, 1213.e1-1213.e2.	3.1	6
147	No association of IFI16 (interferon-inducible protein 16) variants with susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2014, 271, 49-52.	2.3	2
148	Epigenetic modulation of BDNF gene: Differences in DNA methylation between unipolar and bipolar patients. Journal of Affective Disorders, 2014, 166, 330-333.	4.1	85
149	Phenotypic Variability associated with the C9ORF72 Hexanucleotide Repeat Expansion: A Sporadic Case of Frontotemporal Lobar Degeneration with Prodromal Hyposmia and Predominant Semantic Deficits. Journal of Alzheimer's Disease, 2014, 40, 849-855.	2.6	5
150	Possible Association between SNAP-25 Single Nucleotide Polymorphisms and Alterations of Categorical Fluency and Functional MRI Parameters in Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 42, 1015-1028.	2.6	31
151	Transmembrane Protein 106B Gene (TMEM106B) Variability and Influence on Progranulin Plasma Levels in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 43, 757-761.	2.6	2
152	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
153	Progress in Alzheimer's disease research in the last year. Journal of Neurology, 2013, 260, 1936-1941.	3.6	11
154	Regulatory T Cells Suppress the Late Phase of the Immune Response in Lymph Nodes through P-Selectin Glycoprotein Ligand-1. Journal of Immunology, 2013, 191, 5489-5500.	0.8	47
155	Progranulin gene (GRN) promoter methylation is increased in patients with sporadic frontotemporal lobar degeneration. Neurological Sciences, 2013, 34, 899-903.	1.9	30
156	Autosomal Dominant Frontotemporal Lobar Degeneration Due to the C9ORF72 Hexanucleotide Repeat Expansion: Late-Onset Psychotic Clinical Presentation. Biological Psychiatry, 2013, 74, 384-391.	1.3	105
157	Expression of the Transcription Factor Sp1 and its Regulatory hsa-miR-29b in Peripheral Blood Mononuclear Cells from Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 35, 487-494.	2.6	61
158	Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiology of Aging, 2013, 34, 1517.e9-1517.e10.	3.1	35
159	Expression and Genetic Analysis of MicroRNAs Involved in Multiple Sclerosis. International Journal of Molecular Sciences, 2013, 14, 4375-4384.	4.1	71
160	Pharmacogenomics in Alzheimer's disease: a genome-wide association study of response to cholinesterase inhibitors. Neurobiology of Aging, 2013, 34, 1711.e7-1711.e13.	3.1	43
161	Immunotherapy against amyloid pathology in Alzheimer's disease. Journal of the Neurological Sciences, 2013, 333, 50-54.	0.6	38
162	The <i>SIRT2</i> polymorphism rs10410544 and risk of Alzheimer's disease in two Caucasian case–control cohorts. Alzheimer's and Dementia, 2013, 9, 392-399.	0.8	40

#	Article	IF	CITATIONS
163	Epigenetic Modulation of BDNF Gene in Patients with Major Depressive Disorder. Biological Psychiatry, 2013, 73, e6-e7.	1.3	79
164	Decreased circulating miRNA levels in patients with primary progressive multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 1938-1942.	3.0	98
165	An Emerging Role for Long Non-Coding RNA Dysregulation in Neurological Disorders. International Journal of Molecular Sciences, 2013, 14, 20427-20442.	4.1	62
166	Safety of MF59-Adjuvanted Influenza Vaccination in the Elderly: Results of a Comparative Study of MF59-Adjuvanted Vaccine Versus Nonadjuvanted Influenza Vaccine in Northern Italy. American Journal of Epidemiology, 2013, 178, 1139-1145.	3.4	36
167	GRN Thr272fs Clinical Heterogeneity: A Case with Atypical Late Onset Presenting with a Dementia with Lewy Bodies Phenotype. Journal of Alzheimer's Disease, 2013, 35, 669-674.	2.6	17
168	Gender Effects on Plasma PGRN Levels in Patients with Alzheimer's Disease: A Preliminary Study. Journal of Alzheimer's Disease, 2013, 35, 313-318.	2.6	17
169	Disease-modifying drugs in Alzheimer's disease. Drug Design, Development and Therapy, 2013, 7, 1471.	4.3	55
170	The Role of the Innate Immune System in Alzheimer's Disease and Frontotemporal Lobar Degeneration: An Eye on Microglia. Clinical and Developmental Immunology, 2013, 2013, 1-11.	3.3	22
171	Novel Missense Progranulin Gene Mutation Associated with the Semantic Variant of Primary Progressive Aphasia. Journal of Alzheimer's Disease, 2013, 36, 415-420.	2.6	17
172	Evidence of Pre-Synaptic Dopaminergic Deficit in a Patient with a Novel Progranulin Mutation Presenting with Atypical Parkinsonismâ€. Journal of Alzheimer's Disease, 2013, 38, 747-752.	2.6	19
173	Novel Evidence of Phenotypical Variability in the Hexanucleotide Repeat Expansion in Chromosome 9. Journal of Alzheimer's Disease, 2013, 35, 455-462.	2.6	17
174	CHF5074 Reduces Biomarkers of Neuroinflammation in Patients with Mild Cognitive Impairment: A 12-Week, Double-Blind, Placebo- Controlled Study. Current Alzheimer Research, 2013, 10, 742-753.	1.4	73
175	<i>SQSTM1</i> mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology, 2012, 79, 1556-1562.	1.1	252
176	Optimal Plasma Progranulin Cutoff Value for Predicting Null Progranulin Mutations in Neurodegenerative Diseases: A Multicenter Italian Study. Neurodegenerative Diseases, 2012, 9, 121-127.	1.4	88
177	A 66-year-old patient with vanishing white matter disease due to the p.Ala87Val <i>EIF2B3</i> mutation. Neurology, 2012, 79, 2077-2078.	1.1	16
178	The Impact of Osteopontin Gene Variations on Multiple Sclerosis Development and Progression. Clinical and Developmental Immunology, 2012, 2012, 1-6.	3.3	31
179	Does Vascular Burden Contribute to the Progression of Mild Cognitive Impairment to Dementia?. Dementia and Geriatric Cognitive Disorders, 2012, 34, 235-243.	1.5	40
180	MicroRNAs as Active Players in the Pathogenesis of Multiple Sclerosis. International Journal of Molecular Sciences, 2012, 13, 13227-13239.	4.1	61

#	Article	IF	CITATIONS
181	Genetics and Expression Analysis of the Specificity Protein 4 Gene (SP4) in Patients with Alzheimer's Disease and Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2012, 31, 537-542.	2.6	9
182	The Progranulin (GRN) Cys157LysfsX97 Mutation is Associated with Nonfluent Variant of Primary Progressive Aphasia Clinical Phenotype. Journal of Alzheimer's Disease, 2012, 28, 759-763.	2.6	11
183	Efficacy of Souvenaid in Mild Alzheimer's Disease: Results from a Randomized, Controlled Trial. Journal of Alzheimer's Disease, 2012, 31, 225-236.	2.6	256
184	Disease-modifying drugs in multiple sclerosis: new oral options. Clinical Practice (London, England), 2012, 9, 315-327.	0.1	0
185	Ask the Experts: Progress in diagnosing frontotemporal lobar dementia. Neurodegenerative Disease Management, 2012, 2, 251-254.	2.2	0
186	Frontotemporal lobar degeneration: current knowledge and future challenges. Journal of Neurology, 2012, 259, 2278-2286.	3.6	36
187	MicroRNA and mRNA expression profile screening in multiple sclerosis patients to unravel novel pathogenic steps and identify potential biomarkers. Neuroscience Letters, 2012, 508, 4-8.	2.1	95
188	Genetics of Frontotemporal Lobar Degeneration. Frontiers in Neurology, 2012, 3, 52.	2.4	32
189	Selective DNA Methylation of BDNF Promoter in Bipolar Disorder: Differences Among Patients with BDI and BDII. Neuropsychopharmacology, 2012, 37, 1647-1655.	5.4	166
190	Prolonged visual memory enhancement after direct current stimulation in Alzheimer's disease. Brain Stimulation, 2012, 5, 223-230.	1.6	245
191	Early Onset Behavioral Variant Frontotemporal Dementia due to the C9ORF72 Hexanucleotide Repeat Expansion: Psychiatric Clinical Presentations. Journal of Alzheimer's Disease, 2012, 31, 447-452.	2.6	60
192	Progranulin Gene Variability and Plasma Levels in Bipolar Disorder and Schizophrenia. PLoS ONE, 2012, 7, e32164.	2.5	34
193	Possible Influence of a Non-Synonymous Polymorphism Located in the NGF Precursor on Susceptibility to Late-Onset Alzheimer's Disease and Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2012, 29, 699-705.	2.6	20
194	Replication Study to Confirm the Role of CYP2D6 Polymorphism rs1080985 on Donepezil Efficacy in Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2012, 30, 745-749.	2.6	35
195	Sciatic endometriosis presenting as periodic (catamenial) sciatic radiculopathy. Journal of Neurology, 2012, 259, 1470-1471.	3.6	12
196	Progress in multiple sclerosis research in the last year. Journal of Neurology, 2012, 259, 1497-1501.	3.6	1
197	Clinical phenotypes and genetic biomarkers of FTLD. Journal of Neural Transmission, 2012, 119, 851-860.	2.8	83
198	Position paper of the Italian Society for the study of Dementias (Sindem) on the proposal of a new Lexicon on Alzheimer disease. Neurological Sciences, 2012, 33, 201-208.	1.9	6

#	Article	IF	CITATIONS
199	Identification of a new susceptibility variant for multiple sclerosis in OAS1 by population genetics analysis. Human Genetics, 2012, 131, 87-97.	3.8	20
200	Progress in Alzheimer's disease. Journal of Neurology, 2012, 259, 201-211.	3.6	79
201	A Functional Variant in ERAP1 Predisposes to Multiple Sclerosis. PLoS ONE, 2012, 7, e29931.	2.5	46
202	Epigenetic Regulation of Fatty Acid Amide Hydrolase in Alzheimer Disease. PLoS ONE, 2012, 7, e39186.	2.5	64
203	Cessation versus Continuation of Galantamine Treatment after 12 Months of Therapy in Patients with Alzheimer's Disease: A Randomized, Double Blind, Placebo Controlled Withdrawal Trial. Journal of Alzheimer's Disease, 2011, 26, 211-220.	2.6	32
204	An APOE Haplotype Associated with Decreased ε4 Expression Increases the Risk of Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 24, 235-245.	2.6	58
205	Heterosexual Pedophilia in a Frontotemporal Dementia Patient with a Mutation in the Progranulin Gene. Biological Psychiatry, 2011, 70, e43-e44.	1.3	33
206	NOTCH3 gene mutations in subjects clinically suspected of CADASIL. Journal of the Neurological Sciences, 2011, 307, 144-148.	0.6	12
207	CSK3Î ² genetic variability in patients with Multiple Sclerosis. Neuroscience Letters, 2011, 497, 46-48.	2.1	20
208	Expression and genetic analysis of miRNAs involved in CD4+ cell activation in patients with multiple sclerosis. Neuroscience Letters, 2011, 504, 9-12.	2.1	147
209	Study of thyroid hormone receptor alpha gene polymorphisms on Alzheimer's disease. Neurobiology of Aging, 2011, 32, 624-630.	3.1	16
210	No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort. Neurobiology of Aging, 2011, 32, 1157-1158.	3.1	18
211	Founder effect and estimation of the age of the Progranulin Thr272fs mutation in 14 Italian pedigrees with frontotemporal lobar degeneration. Neurobiology of Aging, 2011, 32, 555.e1-555.e8.	3.1	39
212	Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations. Neurobiology of Aging, 2011, 32, 756.e11-756.e15.	3.1	82
213	The Alzheimer's Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer's and Dementia, 2011, 7, 386.	0.8	354
214	A Novel Study and Meta-Analysis of the Genetic Variation of the Serotonin Transporter Promoter in the Italian Population Do Not Support a Large Effect on Alzheimer's Disease Risk. International Journal of Alzheimer's Disease, 2011, 2011, 1-7.	2.0	5
215	Lack of Association between the GPR3 Gene and the Risk for Alzheimer's Disease. International Journal of Alzheimer's Disease, 2011, 2011, 1-3.	2.0	Ο
216	Role of OLR1 and Its Regulating hsa-miR369-3p in Alzheimer's Disease: Genetics and Expression Analysis. Journal of Alzheimer's Disease, 2011, 26, 787-793.	2.6	31

#	Article	IF	CITATIONS
217	BAG1 is a Protective Factor for Sporadic Frontotemporal Lobar Degeneration but not for Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 23, 701-707.	2.6	12
218	Inflammation and oxidative damage in Alzheimer s disease friend or foe. Frontiers in Bioscience - Scholar, 2011, S3, 252-266.	2.1	57
219	From Genotype to Phenotype: Two Cases of Genetic Frontotemporal Lobar Degeneration with Premorbid Bipolar Disorder. Journal of Alzheimer's Disease, 2011, 27, 791-797.	2.6	65
220	Interview: Alzheimer's disease: new paradigms for neurologists. Therapy: Open Access in Clinical Medicine, 2011, 8, 473-474.	0.2	0
221	Phenotypic Heterogeneity of the GRN Asp22fs Mutation in a Large Italian Kindred. Journal of Alzheimer's Disease, 2011, 24, 253-259.	2.6	62
222	Cerebrospinal Fluid Biomarkers in Progranulin Mutations Carriers. Journal of Alzheimer's Disease, 2011, 27, 781-790.	2.6	45
223	A Novel MAPT Mutation Associated with the Clinical Phenotype of Progressive Nonfluent Aphasia. Journal of Alzheimer's Disease, 2011, 26, 19-26.	2.6	28
224	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
225	Inverse agonism of cannabinoid CB1 receptor blocks the adhesion of encephalitogenic T cells in inflamed brain venules by a protein kinase A-dependent mechanism. Journal of Neuroimmunology, 2011, 233, 97-105.	2.3	21
226	Genetic variation in the choline O-acetyltransferase gene in depression and Alzheimer's disease: The VITA and Milano studies. Journal of Psychiatric Research, 2011, 45, 1250-1256.	3.1	15
227	Disease-modifying treatments for Alzheimer's disease. Therapeutic Advances in Neurological Disorders, 2011, 4, 203-216.	3.5	110
228	Cell-dependent kinase inhibitor 2A and 2B genetic variability in patients with Alzheimer's disease. Journal of Neurology, 2011, 258, 704-705.	3.6	1
229	Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. Journal of Neuroinflammation, 2011, 8, 65.	7.2	76
230	Behavioral Genetics of Neurodegenerative Disorders. Current Topics in Behavioral Neurosciences, 2011, 12, 615-631.	1.7	4
231	Alzheimers Disease: From Pathogenesis to Disease-Modifying Approaches. CNS and Neurological Disorders - Drug Targets, 2011, 10, 163-174.	1.4	33
232	Role of <i>hnRNP-A1</i> and miR-590-3p in Neuronal Death: Genetics and Expression Analysis in Patients with Alzheimer Disease and Frontotemporal Lobar Degeneration. Rejuvenation Research, 2011, 14, 275-281.	1.8	57
233	Association of HLA class I markers with multiple sclerosis in the Italian and UK population: evidence of two independent protective effects. Journal of Medical Genetics, 2011, 48, 485-492.	3.2	9
234	Multiple sclerosis: BAFF and CXCL13 in cerebrospinal fluid. Multiple Sclerosis Journal, 2011, 17, 819-829.	3.0	88

#	Article	IF	CITATIONS
235	Osteopontin is Increased in the Cerebrospinal Fluid of Patients with Alzheimer's Disease and Its Levels Correlate with Cognitive Decline. Journal of Alzheimer's Disease, 2010, 19, 1143-1148.	2.6	100
236	The CALHM1 P86L Polymorphism is a Genetic Modifier of Age at Onset in Alzheimer's Disease: a Meta-Analysis Study. Journal of Alzheimer's Disease, 2010, 22, 247-255.	2.6	54
237	Failure to Replicate an Association of rs5984894 SNP in the PCDH11X Gene in a Collection of 1,222 Alzheimer's Disease Affected Patients. Journal of Alzheimer's Disease, 2010, 21, 385-388.	2.6	11
238	Candidate gene analysis of semaphorins in patients with Alzheimer's disease. Neurological Sciences, 2010, 31, 169-173.	1.9	15
239	Loss of epidermal growth factor regulation by cobalamin in multiple sclerosis. Brain Research, 2010, 1333, 64-71.	2.2	19
240	GRN Variability Contributes to Sporadic Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 19, 171-177.	2.6	28
241	The H1 Haplotype of the Tau Gene (MAPT) is Associated with Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2010, 19, 909-914.	2.6	20
242	Immunoproteasome LMP2 60HH Variant Alters MBP Epitope Generation and Reduces the Risk to Develop Multiple Sclerosis in Italian Female Population. PLoS ONE, 2010, 5, e9287.	2.5	56
243	Treatment of Alzheimers Disease: Symptomatic and Disease-Modifying Approaches. Current Aging Science, 2010, 3, 46-56.	1.2	41
244	FUS/TLS Genetic Variability in Sporadic Frontotemporal Lobar Degeneration. Journal of Alzheimer's Disease, 2010, 19, 1317-1322.	2.6	6
245	A study of the association between the ADAM12 and SH3PXD2A (SH3MD1) genes and Alzheimer's disease. Neuroscience Letters, 2010, 468, 1-2.	2.1	15
246	Cerebrospinal fluid progranulin levels in patients with different multiple sclerosis subtypes. Neuroscience Letters, 2010, 469, 234-236.	2.1	24
247	Is KIF24 a genetic risk factor for Frontotemporal Lobar Degeneration?. Neuroscience Letters, 2010, 482, 240-244.	2.1	9
248	Genetics and biology of Alzheimer's disease and frontotemporal lobar degeneration. International Journal of Clinical and Experimental Medicine, 2010, 3, 129-43.	1.3	16
249	APOE Îμ2 and Îμ4 influence the susceptibility for Alzheimer's disease but not other dementias. International Journal of Molecular Epidemiology and Genetics, 2010, 1, 193-200.	0.4	12
250	Rs5848 Variant Influences GRN mRNA Levels in Brain and Peripheral Mononuclear Cells in Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2009, 18, 603-612.	2.6	59
251	The Serotonin Transporter Promoter Polymorphic Region is not a Risk Factor for Alzheimer's Disease Related Behavioral Disturbances. Journal of Alzheimer's Disease, 2009, 18, 125-130.	2.6	13
252	Absence of <i>TARDBP</i> Gene Mutations in an Italian Series of Patients with Frontotemporal Lobar Degeneration. Dementia and Geriatric Cognitive Disorders, 2009, 28, 239-243.	1.5	9

#	Article	IF	CITATIONS
253	Serotonin Transporter Gene Polymorphic Element <i>5-HTTLPR</i> Increases the Risk of Sporadic Parkinson's Disease in Italy. European Neurology, 2009, 62, 120-123.	1.4	15
254	Analysis of the genes coding for subunit 10 and 15 of cytochrome c oxidase in Alzheimer's disease. Journal of Neural Transmission, 2009, 116, 1635-1641.	2.8	16
255	Candidate gene analysis of selectin cluster in patients with multiple sclerosis. Journal of Neurology, 2009, 256, 832-833.	3.6	7
256	CCL8/MCP-2 association analysis in patients with Alzheimer's disease and frontotemporal lobar degeneration. Journal of Neurology, 2009, 256, 1379-1381.	3.6	7
257	Interleukin-6 plasma level increases with age in an Italian elderly population ("The Treviso) Tj ETQq1 1 0.784 155-162.	314 rgBT / 3.0	Overlock 10 28
258	Is the ornithine transcarbamylase gene a genetic determinant of Alzheimer's disease?. Neuroscience Letters, 2009, 449, 76-80.	2.1	9
259	Alpha1-antichymotrypsin induces TNF-α production and NF-κB activation in the murine N9 microglial cell line. Neuroscience Letters, 2009, 467, 40-42.	2.1	10
260	VEGF genetic variability is associated with increased risk of developing Alzheimer's disease. Journal of the Neurological Sciences, 2009, 283, 66-68.	0.6	34
261	Progranulin plasma levels as potential biomarker for the identification of GRN deletion carriers. A case with atypical onset as clinical amnestic Mild Cognitive Impairment converted to Alzheimer's disease. Journal of the Neurological Sciences, 2009, 287, 291-293.	0.6	83
262	Alzheimer's disease: from pathogenesis to novel therapeutic approaches. Therapy: Open Access in Clinical Medicine, 2009, 6, 259-277.	0.2	1
263	MCP-1 A-2518G Polymorphism: Effect on Susceptibility for Frontotemporal Lobar Degeneration and on Cerebrospinal Fluid MCP-1 Levels. Journal of Alzheimer's Disease, 2009, 17, 125-133.	2.6	17
264	Progranulin genetic variations in frontotemporal lobar degeneration: evidence for low mutation frequency in an Italian clinical series. Neurogenetics, 2008, 9, 197-205.	1.4	63
265	Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer's disease and frontotemporal lobar degeneration. Journal of Neurology, 2008, 255, 539-544.	3.6	76
266	Association study to evaluate the serotonin transporter and apolipoprotein E genes in frontotemporal lobar degeneration in Italy. Journal of Human Genetics, 2008, 53, 1029-1033.	2.3	8
267	Gender-specific influence of the chromosome 16 chemokine gene cluster on the susceptibility to Multiple Sclerosis. Journal of the Neurological Sciences, 2008, 267, 86-90.	0.6	30
268	Association of a NOS1 promoter repeat with Alzheimer's disease. Neurobiology of Aging, 2008, 29, 1359-1365.	3.1	31
269	Interaction between the APOE É›4 allele and the APH-1b c+651T›G SNP in Alzheimer's disease. Neurobiology of Aging, 2008, 29, 1494-1501.	3.1	7
270	Role of VEGF gene variability in longevity: A lesson from the Italian population. Neurobiology of Aging, 2008, 29, 1917-1922.	3.1	12

#	Article	IF	CITATIONS
271	A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer's Disease Risk. Cell, 2008, 133, 1149-1161.	28.9	310
272	Polymorphisms in the LOC387715/ARMS2 Putative Gene and the Risk for Alzheimer's Disease. Dementia and Geriatric Cognitive Disorders, 2008, 26, 169-174.	1.5	14
273	Identification of soluble TREM-2 in the cerebrospinal fluid and its association with multiple sclerosis and CNS inflammation. Brain, 2008, 131, 3081-3091.	7.6	248
274	Variation in <i>MAPT</i> is associated with cerebrospinal fluid tau levels in the presence of amyloid-beta deposition. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8050-8054.	7.1	84
275	Inflammation in Neurodegenerative Disorders: Friend or Foe?. Current Aging Science, 2008, 1, 30-41.	1.2	35
276	Presenilin-1 mutation E318G and familial Alzheimer's disease in the Italian population. Neurobiology of Aging, 2007, 28, 1682-1688.	3.1	21
277	Absence of TREM2 polymorphisms in patients with Alzheimer's disease and Frontotemporal Lobar Degeneration. Neuroscience Letters, 2007, 411, 133-137.	2.1	18
278	Serum folate concentrations in patients with cortical and subcortical dementias. Neuroscience Letters, 2007, 420, 213-216.	2.1	11
279	Candidate gene analysis of SPARCL1 gene in patients with multiple sclerosis. Neuroscience Letters, 2007, 425, 173-176.	2.1	6
280	The urokinase-type plasminogen activator polymorphism PLAU_1 is a risk factor for APOE-ε4 non-carriers in the Italian Alzheimer's disease population and does not affect the plasma Aβ(1–42) level. Neurobiology of Disease, 2007, 25, 609-613.	4.4	9
281	ICOS gene haplotypes correlate with IL10 secretion and multiple sclerosis evolution. Journal of Neuroimmunology, 2007, 186, 193-198.	2.3	24
282	Effect of rivastigmine on delay to diagnosis of Alzheimer's disease from mild cognitive impairment: the InDDEx study. Lancet Neurology, The, 2007, 6, 501-512.	10.2	314
283	Progressive, isolated language disturbance: Its significance in a 65-year-old-man. A case report with implications for treatment and review of literature. Journal of the Neurological Sciences, 2006, 240, 45-51.	0.6	14
284	Absence of cerebrospinal fluid oligoclonal bands is associated with delayed disability progression in relapsing-remitting MS patients treated with interferon-l². Journal of the Neurological Sciences, 2006, 244, 97-102.	0.6	40
285	SELPLG and SELP single-nucleotide polymorphisms in multiple sclerosis. Neuroscience Letters, 2006, 394, 92-96.	2.1	13
286	A novel polymorphism in SEL1L confers susceptibility to Alzheimer's disease. Neuroscience Letters, 2006, 398, 53-58.	2.1	24
287	Candidate gene analysis of IP-10 gene in patients with Alzheimer's disease. Neuroscience Letters, 2006, 404, 217-221.	2.1	17
288	Oxidative imbalance in patients with mild cognitive impairment and Alzheimer's disease. Neurobiology of Aging, 2006, 27, 262-269.	3.1	178

#	Article	IF	CITATIONS
289	Is M129V of PRNP gene associated with Alzheimer's disease? A case-control study and a meta-analysis. Neurobiology of Aging, 2006, 27, 770.e1-770.e5.	3.1	54
290	Serum MCP-1 levels are increased in mild cognitive impairment and mild Alzheimer's disease. Neurobiology of Aging, 2006, 27, 1763-1768.	3.1	185
291	Plasma levels of beta-amyloid (1–42) in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 2006, 27, 904-905.	3.1	97
292	Intrathecal Chemokine Synthesis in Mild Cognitive Impairment and Alzheimer Disease. Archives of Neurology, 2006, 63, 538.	4.5	268
293	Immunological patterns identifying disease course and evolution in multiple sclerosis patients. Journal of Neuroimmunology, 2005, 165, 192-200.	2.3	38
294	E-selectin A561C and G98T polymorphisms influence susceptibility and course of multiple sclerosis. Journal of Neuroimmunology, 2005, 165, 201-205.	2.3	17
295	Vascular endothelial growth factor gene variability is associated with increased risk for AD. Annals of Neurology, 2005, 57, 373-380.	5.3	115
296	Production of monocyte chemoattractant proteinâ€1 in amyotrophic lateral sclerosis. Muscle and Nerve, 2005, 32, 541-544.	2.2	104
297	Association of neuronal nitric oxide synthase C276T polymorphism with Alzheimer's disease. Journal of Neurology, 2005, 252, 985-986.	3.6	17
298	Heparan sulfate proteoglycan induces the production of NO and TNF-alpha by murine microglia. Immunity and Ageing, 2005, 2, 11.	4.2	18
299	Heterogeneity of Brain Clucose Metabolism in Mild Cognitive Impairment and Clinical Progression to Alzheimer Disease. Archives of Neurology, 2005, 62, 1728.	4.5	269
300	Efficient Recruitment of Lymphocytes in Inflamed Brain Venules Requires Expression of Cutaneous Lymphocyte Antigen and Fucosyltransferase-VII. Journal of Immunology, 2005, 174, 5805-5813.	0.8	50
301	The T-786C NOS3 polymorphism in Alzheimer's disease: Association and influence on gene expression. Neuroscience Letters, 2005, 382, 300-303.	2.1	26
302	P-selectin glycoprotein ligand-1 variable number of tandem repeats (VNTR) polymorphism in patients with multiple sclerosis. Neuroscience Letters, 2005, 388, 149-152.	2.1	13
303	Influence of the Clu298Asp polymorphism of NOS3 on age at onset and homocysteine levels in AD patients. Neurobiology of Aging, 2005, 26, 789-794.	3.1	36
304	Chemokine network in multiple sclerosis: role in pathogenesis and targeting for future treatments. Expert Review of Neurotherapeutics, 2004, 4, 439-453.	2.8	18
305	CCR2-64I polymorphism and CCR5î"32 deletion in patients with Alzheimer's disease. Journal of the Neurological Sciences, 2004, 225, 79-83.	0.6	35
306	Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Experimental Neurology, 2004, 187, 350-358.	4.1	30

#	Article	IF	CITATIONS
307	MCP-1 in Alzheimer's disease patients: A-2518G polymorphism and serum levels. Neurobiology of Aging, 2004, 25, 1169-1173.	3.1	77
308	RhoA and ζ PKC Control Distinct Modalities of LFA-1 Activation by Chemokines. Immunity, 2004, 20, 25-35.	14.3	185
309	Treatment of Alzheimer's disease; current status and new perspectives. Lancet Neurology, The, 2003, 2, 539-547.	10.2	664
310	Chemokines in serum and cerebrospinal fluid of Alzheimer's disease patients. Annals of Neurology, 2003, 53, 547-548.	5.3	115
311	Alzheimer's disease: from molecular pathogenesis to innovative therapies. Expert Review of Neurotherapeutics, 2003, 3, 619-630.	2.8	11
312	CD8+ T cells from patients with acute multiple sclerosis display selective increase of adhesiveness in brain venules: a critical role for P-selectin glycoprotein ligand-1. Blood, 2003, 101, 4775-4782.	1.4	165
313	Molecular Mechanisms Involved in Lymphocyte Recruitment in Inflamed Brain Microvessels: Critical Roles for P-Selectin Glycoprotein Ligand-1 and Heterotrimeric Gi-Linked Receptors. Journal of Immunology, 2002, 168, 1940-1949.	0.8	246
314	IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease. Journal of the Neurological Sciences, 2002, 195, 41-46.	0.6	92
315	Macrophage infiltration and death in the nerve during the early phases of experimental diabetic neuropathy: a process concomitant with endoneurial induction of IL-1Î ² and p75NTR. Journal of the Neurological Sciences, 2002, 195, 35-40.	0.6	62
316	Interleukin-1beta and interferon-gamma induce proliferation and apoptosis in cultured Schwann cells. Journal of Neuroimmunology, 2002, 124, 29-35.	2.3	33
317	Severe polyneuropathy in a patient with Churg-Strauss syndrome. Journal of the Peripheral Nervous System, 2000, 5, 106-110.	3.1	3
318	Synergistic effect of Â-amyloid protein and interferon gamma on nitric oxide production by C2C12 muscle cells. Brain, 2000, 123, 374-379.	7.6	24
319	The human astrocytoma cell line U373MG produces monocyte chemotactic protein (MCP)-1 upon stimulation with β-amyloid protein. Neuroscience Letters, 2000, 283, 177-180.	2.1	48
320	Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with β-amyloid[25–35]. Journal of Neuroimmunology, 1999, 93, 45-52.	2.3	148
321	The expression of CD59 in experimental allergic neuritis. Journal of the Neurological Sciences, 1999, 165, 154-159.	0.6	17
322	Induction of adhesion molecules on human Schwann cells by proinflammatory cytokines, an immunofluorescence study. Journal of the Neurological Sciences, 1999, 170, 124-130.	0.6	25
323	α-MSH Peptides Inhibit Production of Nitric Oxide and Tumor Necrosis Factor-α by Microglial Cells Activated with β-Amyloid and Interferon γ. Biochemical and Biophysical Research Communications, 1999, 263, 251-256.	2.1	85
324	Cultured human monocytes release proinflammatory cytokines in response to myelin basic protein. Neuroscience Letters, 1998, 252, 151-154.	2.1	6

#	Article	IF	CITATIONS
325	Schwann cell undergoes apoptosis during experimental allergic neuritis (EAN). Journal of the Neurological Sciences, 1998, 161, 29-35.	0.6	27
326	p75 Neurotrophin Receptor Induction and Macrophage Infiltration in Peripheral Nerve during Experimental Diabetic Neuropathy: Possible Relevance on Regeneration. Experimental Neurology, 1997, 146, 206-211.	4.1	23
327	Immunocytochemical expression of human muscle cell p75 neurotrophin receptor is down-regulated by cyclic adenosine 3′,5′-monophosphate. Neuroscience Letters, 1997, 234, 79-82.	2.1	3
328	Induction of p75NGFR in human diabetic neuropathy. Journal of the Neurological Sciences, 1996, 135, 55-62.	0.6	21
329	In situ hybridization study of myelin protein mRNA in rats with an experimental diabetic neuropathy. Neuroscience Letters, 1996, 207, 65-69.	2.1	9
330	Low-affinity nerve growth factor receptor expression in sciatic nerve during P2-peptide induced experimental allergic neuritis. Neuroscience Letters, 1995, 199, 135-138.	2.1	19
331	Expression of the low-affinity NCF receptor during human muscle development, regeneration, and in tissue culture. Muscle and Nerve, 1994, 17, 276-284.	2.2	30
332	Appearance of PLP mRNA in Specific Regions of the Developing Rat Lumbosacral Spinal Cord as Revealed by in Situ Hybridization. Experimental Neurology, 1993, 121, 139-147.	4.1	12
333	Myelin protein transcripts increase in experimental diabetic neuropathy. Neuroscience Letters, 1993, 161, 203-206.	2.1	7
334	Decrease of nerve Na+,K+-ATPase activity in the pathogenesis of human diabetic neuropathy. Journal of the Neurological Sciences, 1993, 120, 159-167.	0.6	52
335	Acute ataxia coincident with seroconversion for anti-HIV. Journal of Neurology, 1991, 238, 356-357.	3.6	14
336	QUANTITATIVE ASSESSMENT OF CLASS II MOLECULES IN NORMAL AND PATHOLOGICAL NERVES. Brain, 1990, 113, 659-675.	7.6	40
337	Myosin heavy chain composition of muscle fibers in spinal muscular atrophy. Muscle and Nerve, 1989, 12, 43-51.	2.2	24
338	Cytochrome c oxidase during human fetal development. International Journal of Developmental Neuroscience, 1989, 7, 5-14.	1.6	9
339	Expression of nerve growth factor receptor during human peripheral nerve development. Developmental Biology, 1988, 125, 301-310.	2.0	56
340	Cultures of human Schwann cells isolated from fetal nerves. Brain Research, 1988, 440, 261-266.	2.2	21
341	Establishment of Schwann cell cultures from adult rat peripheral nerves. Experimental Neurology, 1988, 102, 167-176.	4.1	39
342	S-100 protein and laminin: Immunocytochemical markers for human Schwann cells in vitro. Experimental Neurology, 1986, 93, 77-83.	4.1	36

#	Article	IF	CITATIONS
343	Letters to the editor. Muscle and Nerve, 1984, 7, 493-499.	2.2	6
344	Manifesting carrier of X-linked Duchenne muscular dystrophy. Journal of the Neurological Sciences, 1981, 49, 455-463.	0.6	16
345	Teaching Neuroimage: Crowned Dens Syndrome, an Acute Attack of Calcium Pyrophosphate Deposition Disease Mimicking Acute Meningitis. Neurology, 0, , 10.1212/WNL.0000000000200949.	1.1	Ο