
Xianhua Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Review on Casting Magnesium Alloys: Modification of Commercial Alloys and Development of New Alloys. Journal of Materials Science and Technology, 2016, 32, 1211-1221.	10.7	400
2	Review of Mg alloy corrosion rates. Journal of Magnesium and Alloys, 2020, 8, 989-998.	11.9	212
3	Effect of Sn content on strain hardening behavior of as-extruded Mg-Sn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 713, 244-252.	5.6	115
4	Strain hardening of as-extruded Mg-xZn (x = 1, 2, 3 and 4 wt%) alloys. Journal of Materials Science and Technology, 2019, 35, 142-150.	10.7	105
5	Effect of heat treatment on strain hardening of ZK60 Mg alloy. Materials & Design, 2011, 32, 1526-1530.	5.1	103
6	Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Y–Zr alloys. Materials & Design, 2015, 65, 360-369.	5.1	91
7	High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method. Journal of Magnesium and Alloys, 2016, 4, 270-277.	11.9	80
8	A review on electromagnetic shielding magnesium alloys. Journal of Magnesium and Alloys, 2021, 9, 1906-1921.	11.9	75
9	Enhanced mechanical properties of Mg-Gd-Y-Zn-Mn alloy by tailoring the morphology of long period stacking ordered phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 733, 267-275.	5.6	71
10	Effects of Y and Zn additions on electrical conductivity and electromagnetic shielding effectiveness of Mg-Y-Zn alloys. Journal of Materials Science and Technology, 2019, 35, 1074-1080.	10.7	67
11	Effect of Y and Ce additions on microstructure and mechanical properties of Mg–Zn–Zr alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 644, 247-253.	5.6	65
12	Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg–Zn–Zr–Ce alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 259-268.	5.6	65
13	Strain hardening behavior of Mg–Y alloys after extrusion process. Journal of Magnesium and Alloys, 2019, 7, 672-680.	11.9	65
14	Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg–Zn–Cu–Zr alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 197, 67-74.	3.5	64
15	Effect of heat treatment on electromagnetic shielding effectiveness of ZK60 magnesium alloy. Materials & Design, 2012, 42, 327-333.	5.1	63
16	The effects of Ca and Mn on the microstructure, texture and mechanical properties of Mg-4 Zn alloy. Journal of Magnesium and Alloys, 2020, , .	11.9	59
17	Microstructures and mechanical properties of nano carbides reinforced CoCrFeMnNi high entropy alloys. Journal of Alloys and Compounds, 2019, 792, 170-179.	5.5	58
18	A novel approach to melt purification of magnesium alloys. Journal of Magnesium and Alloys, 2016, 4, 8-14	11.9	54

XIANHUA CHEN

#	Article	IF	CITATIONS
19	Microstructure, mechanical properties and wear resistance of Ti particles reinforced AZ31 magnesium matrix composites. Journal of Magnesium and Alloys, 2022, 10, 2266-2279.	11.9	53
20	A new high-strength Mg-Zn-Ce-Y-Zr magnesium alloy. Journal of Alloys and Compounds, 2016, 688, 537-541.	5.5	52
21	Effect of Nd on microstructure and mechanical properties of as-extruded Mg-Y-Zr-Nd alloy. Journal of Materials Science and Technology, 2017, 33, 926-934.	10.7	52
22	Enhanced electromagnetic interference shielding in ZK60 magnesium alloy by aging precipitation. Journal of Physics and Chemistry of Solids, 2013, 74, 872-878.	4.0	47
23	Effect of micron-Ti particles on microstructure and mechanical properties of Mg–3Al–1Zn based composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142526.	5.6	45
24	Simultaneously improving elastic modulus and damping capacity of extruded Mg-Gd-Y-Zn-Mn alloy via alloying with Si. Journal of Alloys and Compounds, 2019, 810, 151857.	5.5	43
25	Development of a novel Mg–Y–Zn–Al–Li alloy with high elastic modulus and damping capacity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 790, 139744.	5.6	41
26	The effect of Y addition on recrystallization and mechanical properties of Mg–6Zn–xY–0.5Ce–0.4Zr alloys. Vacuum, 2018, 155, 445-455.	3.5	39
27	Microstructure and mechanical properties of as-extruded and as-aged Mg–Zn–Al–Sn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 165-173.	5.6	38
28	Effects of Sn addition on microstructure and mechanical properties of Mg-Zn-Al alloys. Progress in Natural Science: Materials International, 2017, 27, 695-702.	4.4	35
29	Effect of secondary phase on the electromagnetic shielding effectiveness of magnesium alloy. Scientific Reports, 2018, 8, 1625.	3.3	33
30	A simultaneous increase of elastic modulus and ductility by Al and Li additions in Mg-Gd-Zn-Zr-Ag alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771, 138576.	5.6	27
31	New high-modulus and high-strength Mg-Gd-Ag-Mn-Ge alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 805, 140559.	5.6	27
32	A review of the design, processes, and properties of Mg-based composites. Nanotechnology Reviews, 2022, 11, 712-730.	5.8	27
33	Effect of Mn Addition on Melt Purification and Fe Tolerance in Mg Alloys. Jom, 2021, 73, 892-902.	1.9	24
34	Microstructure and compressive properties of Mg–9Al composite reinforced with Ni-coated graphene nanosheets. Vacuum, 2020, 181, 109629.	3.5	23
35	Optimization in strength-ductility of heterogeneous Mg-13Gd alloy via small extrusion ratio combined with pre-aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 833, 142540.	5.6	22
36	Work hardening behavior of Ti particle reinforced AZ91 composite prepared by spark plasma sintering. Vacuum, 2021, 183, 109833.	3.5	20

XIANHUA CHEN

#	Article	IF	CITATIONS
37	Microstructure and mechanical properties with various pre-treatment and Zn content in Mg-Gd-Y-Zn alloys. Journal of Alloys and Compounds, 2020, 831, 154873.	5.5	19
38	Microstructure, texture and mechanical properties of the rolled high modulus Mg-Y-Zn-Al-Li alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142242.	5.6	19
39	Improving Strength and Electromagnetic Shielding Effectiveness of Mg–Sn–Zn–Ca–Ce Alloy by Sn Addition. Advanced Engineering Materials, 2021, 23, 2100166.	3.5	15
40	Effects of Sm addition on electromagnetic interference shielding property of Mg–Zn–Zr alloys. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	14
41	Effect of Sn Addition on Microstructure and Corrosion Behavior of As-Extruded Mg–5Zn–4Al Alloy. Materials, 2019, 12, 2069.	2.9	14
42	Strain Hardening Behavior in Mg–Al Alloys at Room Temperature. Advanced Engineering Materials, 2019, 21, 1801062.	3.5	14
43	A reverse design model for high-performance and low-cost magnesium alloys by machine learning. Computational Materials Science, 2022, 201, 110881.	3.0	14
44	Compressive deformation of as-extruded LPSO-containing Mg alloys at different temperatures. Journal of Materials Research and Technology, 2022, 16, 944-959.	5.8	14
45	Effect of impurity reduction on rollability of AZ31 magnesium alloy. Journal of Materials Science, 2012, 47, 514-520.	3.7	13
46	Strength improvement in ZK60 magnesium alloy induced by pre-deformation and heat treatment. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 393-398.	1.0	13
47	Thermal conductivity and mechanical properties of Sm-containing Mg-Zn-Zr alloys. Materials Science and Technology, 2018, 34, 138-144.	1.6	13
48	Altered age-hardening behavior in the ultrafine-grained surface layer of Mg-Zn-Y-Ce-Zr alloy processed by sliding friction treatment. Journal of Materials Science and Technology, 2021, 78, 20-29.	10.7	13
49	Effect of interfacial structure on grain refinement and strength of Ti particles reinforced AZ31 composites. Vacuum, 2022, 203, 111287.	3.5	13
50	Microstructural evolution in the ultrafine-grained surface layer of Mg-Zn-Y-Ce-Zr alloy processed by sliding friction treatment. Materials Characterization, 2020, 166, 110423.	4.4	12
51	Thermal Stability and Tensile Properties of Electrodeposited Cu-Bi Alloy. Journal of Materials Engineering and Performance, 2011, 20, 481-486.	2.5	10
52	Effect of micro-alloying Ca on microstructure, texture and mechanical properties of Mg–Zn–Y–Ce alloys. Progress in Natural Science: Materials International, 2020, 30, 213-220.	4.4	10
53	Microstructure, creep behavior and corrosion resistance in the ultrafine-grained surface layer of Mg-6Zn-0.2Y-0.4Ce-0.5Zr alloy processed by surfacing friction treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 776, 138995.	5.6	10
54	Microstructure and mechanical properties of LPSO dominant Mg-2Y-Cu-TM (TM=Cu, Zn, Co, Ni) alloys. Materials Characterization, 2022, 191, 112111.	4.4	9

XIANHUA CHEN

#	Article	IF	CITATIONS
55	Microstructure and Electromagnetic Shielding Properties of Mg-Zn-Ce-Y-Zr Alloys. Journal of Materials Engineering and Performance, 2018, 27, 4722-4731.	2.5	8
56	Size effect of the width of beta-Li phase on the ductility of magnesium–lithium dual-phase alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 814, 141217.	5.6	8
57	Large strain hardening of magnesium containing <i>in situ</i> nanoparticles. Nanotechnology Reviews, 2021, 10, 1018-1030.	5.8	8
58	Effect of impurity reduction on dynamic recrystallization, texture evolution and mechanical anisotropy of rolled AZ31 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138741.	5.6	7
59	First-principles study on the thermodynamic, electronic and mechanical properties of Mg–Al–Si ternary compounds. Journal of Materials Research and Technology, 2022, 19, 2848-2862.	5.8	7
60	Improved mechanical properties in AZ31 magnesium alloys induced by impurity reduction. Journal Wuhan University of Technology, Materials Science Edition, 2013, 28, 1207-1211.	1.0	6
61	Microstructure and Mechanical Properties of Mg–6Al–1Sn–0.3Mn Alloy Sheet Fabricated through Extrusion Combined with Rolling. Crystals, 2018, 8, 356.	2.2	6
62	Effect of Zener–Hollomon Parameter on High-Temperature Deformation Behaviors of Mg–6Zn–1.5Y–0.5Ce–0.4Zr Alloy. Acta Metallurgica Sinica (English Letters), 2021, 34, 606-616.	2.9	6
63	Alloy Design Strategies of the Native Anti-corrosion Magnesium Alloy. Minerals, Metals and Materials Series, 2019, , 169-173.	0.4	4
64	Determination of ultra-trace levels of titanium in human serum using inductively coupled plasma tandem mass spectrometry based on O2/H2 reaction gas. Analytica Chimica Acta, 2021, 1165, 338564.	5.4	3
65	Corrosion of Mg Alloys. , 2022, , 46-74.		3
66	Microstructure and mechanical properties of rolled Mg–Gd–Zn–Zr–Ag–Al–Li alloys. International Journal of Materials Research, 2020, 111, 645-653.	0.3	2
67	Effect of Heat Treatment on Microstructure and Mechanical Properties of Extruded Mg-4Zn-1.5Al-2Sn Alloy. Journal of Materials Engineering and Performance, 2019, 28, 4565-4573.	2.5	0
68	Temperature Effect on Strain Hardening Behaviors of Asâ€Extruded Binary Magnesium Alloys. Advanced Engineering Materials, 2021, 23, 2001104.	3.5	0
69	Effects of Gd on the microstructure and mechanical properties of Mg–Li dual-phase alloys. International Journal of Materials Research, 2020, 111, 432-438.	0.3	0