Chaofeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456082/publications.pdf

Version: 2024-02-01

		136950	175258
98	3,157	32	52
papers	citations	h-index	g-index
100	100	100	3723
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China. Journal of Hazardous Materials, 2010, 173, 653-660.	12.4	297
2	Dioxin-like compounds in agricultural soils near e-waste recycling sites from Taizhou area, China: Chemical and bioanalytical characterization. Environment International, 2009, 35, 50-55.	10.0	151
3	Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials, 2010, 177, 384-389.	12.4	135
4	Identification of Ah Receptor Agonists in Soil of E-waste Recycling Sites from Taizhou Area in China. Environmental Science &	10.0	117
5	Enhancement of phenanthrene and pyrene degradation in rhizosphere of tall fescue (Festuca) Tj ETQq1 1 0.78431	4 rgBT /C	verlock 10 T
6	Identification, characterization and molecular analysis of the viable but nonculturable Rhodococcus biphenylivorans. Scientific Reports, 2015, 5, 18590.	3.3	86
7	Health risk assessment of migrant workers' exposure to polychlorinated biphenyls in air and dust in an e-waste recycling area in China: Indication for a new wealth gap in environmental rights. Environment International, 2016, 87, 33-41.	10.0	82
8	Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chemical Engineering Journal, 2015, 279, 673-680.	12.7	74
9	Risk Assessment of Heavy Metals Pollution in Agricultural Soils of Siling Reservoir Watershed in Zhejiang Province, China. BioMed Research International, 2013, 2013, 1-10.	1.9	73
10	PXR-mediated transcriptional activation of CYP3A4 by cryptotanshinone and tanshinone IIA. Chemico-Biological Interactions, 2009, 177, 58-64.	4.0	63
11	Inorganic and organic pollution in agricultural soil from an emerging e-waste recycling town in Taizhou area, China. Journal of Soils and Sediments, 2010, 10, 895-906.	3.0	61
12	Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). Chemosphere, 2017, 178, 59-64.	8.2	60
13	Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated- \hat{l}^2 -cyclodextrins. Journal of Hazardous Materials, 2009, 172, 1671-1676.	12.4	57
14	Growth, bioluminescence and shoal behavior hormetic responses to inorganic and/or organic chemicals: A review. Environment International, 2014, 64, 28-39.	10.0	56
15	Study on adverse impact of e-waste disassembly on surface sediment in East China by chemical analysis and bioassays. Journal of Soils and Sediments, 2010, 10, 359-367.	3.0	54
16	Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Molecular Biology, 2009, 71, 251-263.	3.9	53
17	Interaction of Pseudomonas putida CZ1 with clays and ability of the composite to immobilize copper and zinc from solution. Bioresource Technology, 2009, 100, 330-337.	9.6	51
18	A novel approach to stimulate the biphenyl-degrading potential of bacterial community from PCBs-contaminated soil of e-waste recycling sites. Bioresource Technology, 2013, 146, 27-34.	9.6	50

#	Article	IF	Citations
19	Levels and patterns of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in municipal waste incinerator bottom ash in Zhejiang province, China. Journal of Hazardous Materials, 2010, 179, 197-202.	12.4	48
20	Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environmental Science and Pollution Research, 2014, 21, 5201-5210.	5.3	48
21	Enhanced degradation of biphenyl from PCB-contaminated sediments: the impact of extracellular organic matter from Micrococcus luteus. Applied Microbiology and Biotechnology, 2015, 99, 1989-2000.	3.6	48
22	Exploring the potential environmental functions of viable but non-culturable bacteria. World Journal of Microbiology and Biotechnology, 2013, 29, 2213-2218.	3.6	46
23	Viable but Nonculturable State of Yeast <i>Candida</i> sp. Strain LN1 Induced by High Phenol Concentrations. Applied and Environmental Microbiology, 2021, 87, e0111021.	3.1	45
24	Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9T. Environmental Pollution, 2020, 263, 114488.	7.5	44
25	\hat{l}^2 -cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area. Journal of Environmental Monitoring, 2010, 12, 1482.	2.1	43
26	Assessment of phenanthrene bioavailability in aged and unaged soils by mild extraction. Environmental Monitoring and Assessment, 2012, 184, 549-559.	2.7	42
27	Paddy field – A natural sequential anaerobic–aerobic bioreactor for polychlorinated biphenyls transformation. Environmental Pollution, 2014, 190, 43-50.	7.5	41
28	Photosensitized degradation of 2,4 \hat{a} \in 2,5-trichlorobiphenyl (PCB 31) by dissolved organic matter. Journal of Hazardous Materials, 2012, 201-202, 1-6.	12.4	40
29	Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop. International Journal of Environmental Research and Public Health, 2014, 11, 3118-3131.	2.6	37
30	Biodegradation and chemotaxis of polychlorinated biphenyls, biphenyls, and their metabolites by Rhodococcus spp Biodegradation, 2018, 29, 1-10.	3.0	36
31	Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. Science of the Total Environment, 2021, 764, 142851.	8.0	33
32	Rhodococcus biphenylivorans sp. nov., a polychlorinated biphenyl-degrading bacterium. Antonie Van Leeuwenhoek, 2015, 107, 55-63.	1.7	32
33	Interaction between pollutants during the removal of polychlorinated biphenyl-heavy metal combined pollution by modified nanoscale zero-valent iron. Science of the Total Environment, 2019, 673, 120-127.	8.0	32
34	Interface Shear Behavior between MICP-Treated Calcareous Sand and Steel. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	32
35	Effects of environmental factors on the removal of heavy metals by sulfide-modified nanoscale zerovalent iron. Environmental Research, 2020, 187, 109662.	7.5	32
36	Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biological Research, 2009, 42, .	3.4	31

#	Article	IF	CITATIONS
37	Bacterial Communities of Polychlorinated Biphenyls Polluted Soil Around an E-waste Recycling Workshop. Soil and Sediment Contamination, 2013, 22, 562-573.	1.9	31
38	Induction of Viable but Nonculturable State in Rhodococcus and Transcriptome Analysis Using RNA-seq. PLoS ONE, 2016, 11, e0147593.	2.5	31
39	Comparison of structure-dependent hormetic cytotoxicity induced by coplanar and non-coplanar PCB congeners. Journal of Hazardous Materials, 2010, 180, 773-776.	12.4	30
40	New Insights into Regulation of Proteome and Polysaccharide in Cell Wall of Elsholtzia splendens in Response to Copper Stress. PLoS ONE, 2014, 9, e109573.	2.5	29
41	Oxidative dehalogenation and mineralization of polychlorinated biphenyls by a resuscitated strain Streptococcus sp. SPCO. Environmental Research, 2022, 207, 112648.	7.5	29
42	Water Quality Characterization of the Siling Reservoir (Zhejiang, China) Using Water Quality Index. Clean - Soil, Air, Water, 2016, 44, 553-562.	1.1	27
43	Levels and distributions of polycyclic aromatic hydrocarbons in agricultural soils in an emerging e-waste recycling town in Taizhou area, China. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1076-1084.	1.7	26
44	Sphingobium fuliginis HC3: A Novel and Robust Isolated Biphenyl- and Polychlorinated Biphenyls-Degrading Bacterium without Dead-End Intermediates Accumulation. PLoS ONE, 2015, 10, e0122740.	2.5	26
45	A novel approach to enhance biological nutrient removal using a culture supernatant from Micrococcus luteus containing resuscitation-promoting factor (Rpf) in SBR process. Environmental Science and Pollution Research, 2016, 23, 4498-4508.	5.3	26
46	Feasibility of bioleaching of heavy metals from sediment with indigenous bacteria using agricultural sulfur soil conditioners. Science of the Total Environment, 2020, 703, 134812.	8.0	26
47	Biotoxicity Assessment of Pyrene in Soil Using a Battery of Biological Assays. Archives of Environmental Contamination and Toxicology, 2012, 63, 503-512.	4.1	23
48	A Battery of Bioassays for the Evaluation of Phenanthrene Biotoxicity in Soil. Archives of Environmental Contamination and Toxicology, 2013, 65, 47-55.	4.1	22
49	Induction of <scp><i>Escherichia coli</i> O157</scp> : <scp>H7</scp> into a viable but nonâ€culturable state by high temperature and its resuscitation. Environmental Microbiology Reports, 2020, 12, 568-577.	2.4	22
50	Assessment of Pyrene Bioavailability in Soil by Mild Hydroxypropyl- \hat{l}^2 -Cyclodextrin Extraction. Archives of Environmental Contamination and Toxicology, 2011, 60, 107-115.	4.1	21
51	Cr(VI) Resistance and Removal by Indigenous Bacteria Isolated from Chromium-Contaminated Soil. Journal of Microbiology and Biotechnology, 2013, 23, 1123-1132.	2.1	21
52	PCB congeners induced mitochondrial dysfunction in Vero cells. Journal of Hazardous Materials, 2011, 185, 24-28.	12.4	19
53	Forty years studies on polychlorinated biphenyls pollution, food safety, health risk, and human health in an e-waste recycling area from Taizhou city, China: a review. Environmental Science and Pollution Research, 2022, 29, 4991-5005.	5.3	17
54	Microbial dechlorination of HCB, PCP, PCB180, HCH and PCE in a Yangtze Three Gorges Reservoir enrichment culture, China. Environmental Earth Sciences, 2016, 75, 1.	2.7	16

#	Article	IF	CITATIONS
55	Surfactant enhanced pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea). Environmental Science and Pollution Research, 2016, 23, 18129-18136.	5.3	15
56	Transformation of Lead Solid Fraction in the Rhizosphere of Elsholtzia splendens: The Importance of Organic Matter. Water, Air, and Soil Pollution, 2010, 205, 333-342.	2.4	14
57	PBDEs and PCDD/Fs in surface soil taken from the Taizhou e-waste recycling area, China. Chemistry and Ecology, 2014, 30, 245-251.	1.6	14
58	Optimization of protein production by Micrococcus luteus for exploring pollutant-degrading uncultured bacteria. SpringerPlus, 2014, 3, 117.	1.2	14
59	An Optimized Method to Assess Viable Escherichia coli O157:H7 in Agricultural Soil Using Combined Propidium Monoazide Staining and Quantitative PCR. Frontiers in Microbiology, 2020, 11, 1809.	3.5	14
60	Influence of redox conditions on the microbial degradation of polychlorinated biphenyls in different niches of rice paddy fields. Soil Biology and Biochemistry, 2014, 78, 307-315.	8.8	13
61	Hormetic effects of noncoplanar PCB exposed to human lung fibroblast cells (HELF) and possible role of oxidative stress. Environmental Toxicology, 2015, 30, 1385-1392.	4.0	13
62	Biofertilizer-induced response to cadmium accumulation in Oryza sativa L. grains involving exogenous organic matter and soil bacterial community structure. Ecotoxicology and Environmental Safety, 2021, 211, 111952.	6.0	13
63	Effect of MSW Source-Classified Collection on Polycyclic Aromatic Hydrocarbons in Residues from Full-Scale Incineration in China. Water, Air, and Soil Pollution, 2009, 198, 347-358.	2.4	12
64	Alterations in the Cell Wall of Rhodococcus biphenylivorans Under Norfloxacin Stress. Frontiers in Microbiology, 2020, 11, 554957.	3 . 5	12
65	Anaerobic condition induces a viable but nonculturable state of the PCB-degrading Bacteria Rhodococcus biphenylivorans TG9. Science of the Total Environment, 2021, 764, 142849.	8.0	12
66	Estrogenic effects of dissolved organic matter and its impact on the activity of $17\hat{l}^2$ -estradiol. Environmental Science and Pollution Research, 2012, 19, 522-528.	5. 3	11
67	A Preliminary Study on the Occurrence and Dissipation of Estrogen in Livestock Wastewater. Bulletin of Environmental Contamination and Toxicology, 2013, 90, 391-396.	2.7	11
68	Acceleration of perchloroethylene dechlorination by extracellular secretions from Microbacterium in a mixed culture containing Desulfitobacterium. Environmental Pollution, 2019, 245, 651-657.	7.5	11
69	Extracellular organic matter from Micrococcus luteus containing resuscitation-promoting factor in sequencing batch reactor for effective nutrient and phenol removal. Science of the Total Environment, 2020, 727, 138627.	8.0	11
70	Neglected resistance risks: Cooperative resistance of antibiotic resistant bacteria influenced by primary soil components. Journal of Hazardous Materials, 2022, 429, 128229.	12.4	11
71	Effect of microplastics on microbial dechlorination of a polychlorinated biphenyl mixture (Aroclor) Tj ETQq1 1 0.78	84314 rgB 8.0	T/Overlock
72	Accelerated photo-transformation of 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) in water by dissolved organic matter. Environmental Science and Pollution Research, 2013, 20, 1842-1848.	5.3	10

#	Article	IF	Citations
73	Proteomic changes of viable but nonculturable (VBNC) Escherichia coli O157:H7 induced by low moisture in an artificial soil. Biology and Fertility of Soils, 2021, 57, 219-234.	4.3	10
74	The dominant effect of black carbon on the chemical degradability of PCB1: Sequestration or/and catalysis. Science of the Total Environment, 2021, 770, 145265.	8.0	10
75	Pangenomic and functional investigations for dormancy and biodegradation features of an organic pollutant-degrading bacterium Rhodococcus biphenylivorans TG9. Science of the Total Environment, 2022, 809, 151141.	8.0	10
76	PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions. Environmental Science and Pollution Research, 2016, 23, 3907-3913.	5. 3	9
77	Removal of Intracellular and Extracellular Antibiotic Resistance Genes in Municipal Wastewater Effluent by Electrocoagulation. Environmental Engineering Science, 2020, 37, 783-789.	1.6	9
78	Antibiotic tolerance and degradation capacity of the organic pollutant-degrading bacterium Rhodococcus biphenylivorans TG9T. Journal of Hazardous Materials, 2022, 424, 127712.	12.4	9
79	Phytotoxicity assessment of phenanthrene and pyrene in soil using two barley genotypes. Toxicological and Environmental Chemistry, 2014, 96, 94-105.	1.2	8
80	Occurrence of (Anti)estrogenic Effects in Surface Sediment from an E-Waste Disassembly Region in East China. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 161-165.	2.7	7
81	Effects of RAMEB and/or mechanical mixing on the bioavailability and biodegradation of PCBs in soil/slurry. Chemosphere, 2016, 155, 479-487.	8.2	7
82	Effects of structurally different noncoplanar and coplanar PCBs on HELF cell proliferation, cell cycle, and potential molecular mechanisms. Environmental Toxicology, 2017, 32, 1183-1190.	4.0	7
83	Enhancement of perchloroethene dechlorination by a mixed dechlorinating culture via magnetic nanoparticle-mediated isolation method. Science of the Total Environment, 2021, 786, 147421.	8.0	7
84	The effect of black carbon on the chemical degradability of PCB1 via TENAX desorption technology from the perspective of adsorption states. Chemosphere, 2022, 286, 131583.	8.2	7
85	Lead availability and soil microbial community composition in rice rhizosphere affected by thiosulfate addition. Applied Soil Ecology, 2010, 45, 232-237.	4.3	6
86	Sequestration effect and mechanism of PCB1 by high-temperature black carbon. Environmental Science and Pollution Research, 2020, 27, 31516-31526.	5.3	6
87	Chemical and Bioassay Analysis of Estrogen Pollution in the Surface Water of the Tiaoxi River, the Source River for Taihu Lake. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 816-819.	2.7	5
88	Morphological alterations of Vero cell exposed to coplanar PCB 126 and noncoplanar PCB 153. Environmental Toxicology, 2012, 27, 26-31.	4.0	5
89	Tracing Intracellular Localization and Chemical Forms of Copper in Elsholtzia splendens with Cluster Analysis. Biological Trace Element Research, 2014, 160, 418-426.	3.5	5
90	Editorial: Organohalide Respiration: New Findings in Metabolic Mechanisms and Bioremediation Applications. Frontiers in Microbiology, 2019, 10, 526.	3.5	5

CHAOFENG

#	Article	IF	CITATION
91	Hormetic Responses of Food-Supplied PCB 31 to Zebrafish <i> (Danio Rerio)</i> Growth. Dose-Response, 2015, 1, 1-14.	1.6	5
92	Metagenomic study of humic acid promoting the dechlorination of polychlorinated biphenyls. Chemosphere, 2022, 301, 134688.	8.2	5
93	Polychlorinated Biphenyls Attenuation in Soil from Eâ€Waste Recycling Area under Flooded and Dryland Conditions. Clean - Soil, Air, Water, 2015, 43, 584-591.	1.1	4
94	PCB118-Induced Cell Proliferation Mediated by Oxidative Stress and MAPK Signaling Pathway in HELF Cells. Dose-Response, 2018, 16, 155932581775152.	1.6	4
95	Exploring the recycling of bioleaching functional bacteria and sulfur substrate using the sulfur-covered biochar particles. Environmental Sciences Europe, 2020, 32, .	5.5	4
96	Enhanced perchloroethene dechlorination by humic acids via increasing the dehalogenase activity of <i>Dehalococcoides</i> strains. FEMS Microbiology Ecology, 2022, 98, .	2.7	4
97	Alternative Evaluation to Earthworm Toxicity Test in Polychlorinated Biphenyls Spiked and Remediated Soils. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 250-254.	2.7	1
98	Isolation and Analysis of Cell Wall Proteome in Elsholtzia splendens Roots Using ITRAQ with LC–ESI–MS/MS. Applied Biochemistry and Biotechnology, 2015, 176, 1174-1194.	2.9	0