Beverley J Glover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5455634/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science, 2005, 10, 63-70.	8.8	891
2	Pointillist structural color in <i>Pollia</i> fruit. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15712-15715.	7.1	475
3	Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature, 1994, 369, 661-664.	27.8	421
4	Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science, 2009, 323, 130-133.	12.6	345
5	Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca ²⁺ channels. Plant Journal, 2009, 58, 903-913.	5.7	191
6	Complex pigment evolution in the Caryophyllales. New Phytologist, 2011, 190, 854-864.	7.3	184
7	Controlled, Bioâ€inspired Selfâ€Assembly of Celluloseâ€Based Chiral Reflectors. Advanced Optical Materials, 2014, 2, 646-650.	7.3	179
8	Analysing photonic structures in plants. Journal of the Royal Society Interface, 2013, 10, 20130394.	3.4	178
9	Bees associate warmth with floral colour. Nature, 2006, 442, 525-525.	27.8	170
10	Conical Epidermal Cells Allow Bees to Grip Flowers and Increase Foraging Efficiency. Current Biology, 2009, 19, 948-953.	3.9	169
11	Is ATP a Signaling Agent in Plants?. Plant Physiology, 2003, 133, 456-461.	4.8	165
12	The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity, 1998, 80, 778-784.	2.6	151
13	Structural colour and iridescence in plants: the poorly studied relations of pigment colour. Annals of Botany, 2010, 105, 505-511.	2.9	150
14	Why do so many petals have conical epidermal cells?. Annals of Botany, 2011, 108, 609-616.	2.9	147
15	Vortex shedding model of a flapping flag. Journal of Fluid Mechanics, 2008, 617, 1-10.	3.4	139
16	Disorder in convergent floral nanostructures enhances signalling to bees. Nature, 2017, 550, 469-474.	27.8	120
17	Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interactions, 2007, 1, 45-55.	1.1	116
18	Paralogous Radiations of PIN Proteins with Multiple Origins of Noncanonical PIN Structure. Molecular Biology and Evolution, 2014, 31, 2042-2060.	8.9	111

#	Article	IF	CITATIONS
19	An Arabidopsis flavonoid transporter is required for anther dehiscence and pollen development. Journal of Experimental Botany, 2010, 61, 439-451.	4.8	109
20	Natural Helicoidal Structures: Morphology, Self-assembly and Optical Properties. Materials Today: Proceedings, 2014, 1, 177-185.	1.8	100
21	The flower of <i><scp>H</scp>ibiscus trionum</i> is both visibly and measurably iridescent. New Phytologist, 2015, 205, 97-101.	7.3	97
22	Functional aspects of cell patterning in aerial epidermis. Current Opinion in Plant Biology, 2007, 10, 70-82.	7.1	95
23	Structural Color and Iridescence in Transparent Sheared Cellulosic Films. Macromolecular Chemistry and Physics, 2013, 214, 25-32.	2.2	89
24	The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Die Naturwissenschaften, 2008, 95, 845-850.	1.6	86
25	Function of blue iridescence in tropical understorey plants. Journal of the Royal Society Interface, 2010, 7, 1699-1707.	3.4	86
26	Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts?. PLoS Pathogens, 2016, 12, e1005790.	4.7	86
27	The Evolution of Diverse Floral Morphologies. Current Biology, 2017, 27, R941-R951.	3.9	85
28	Anthocyanins. Current Biology, 2012, 22, R147-R150.	3.9	83
29	Resolving Recent Plant Radiations: Power and Robustness of Genotyping-by-Sequencing. Systematic Biology, 2018, 67, 250-268.	5.6	78
30	Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytologist, 2006, 171, 875-886.	7.3	73
31	How can an understanding of plant–pollinator interactions contribute to global food security?. Current Opinion in Plant Biology, 2015, 26, 72-79.	7.1	68
32	Development of a complex floral trait: The pollinatorâ€attracting petal spots of the beetle daisy, <i>Gorteria diffusa</i> (Asteraceae). American Journal of Botany, 2009, 96, 2184-2196.	1.7	64
33	Evolutionary Analysis of the MIXTA Gene Family Highlights Potential Targets for the Study of Cellular Differentiation. Molecular Biology and Evolution, 2013, 30, 526-540.	8.9	61
34	Lipid microdomains – plant membranes get organized. Trends in Plant Science, 2005, 10, 263-265.	8.8	60
35	Duplication and Functional Diversification of HAP3 Genes Leading to the Origin of the Seed-Developmental Regulatory Gene, LEAFY COTYLEDON1 (LEC1), in Nonseed Plant Genomes. Molecular Biology and Evolution, 2008, 25, 1581-1592.	8.9	56
36	Structural colour from helicoidal cell-wall architecture in fruits of <i>Margaritaria nobilis</i> . Journal of the Royal Society Interface, 2016, 13, 20160645.	3.4	55

#	Article	IF	CITATIONS
37	Floral ontogenetic evidence of repeated speciation via paedomorphosis in subtribe Orchidinae (Orchidaceae). Botanical Journal of the Linnean Society, 2008, 157, 429-454.	1.6	53
38	Convergent evolution within the genus Solanum: the specialised anther cone develops through alternative pathways. Gene, 2004, 331, 1-7.	2.2	51
39	The evo-devo of plant speciation. Nature Ecology and Evolution, 2017, 1, 110.	7.8	51
40	An analysis of the energetic reward offered by field bean (<i>Vicia faba</i>) flowers: Nectar, pollen, and operative force. Ecology and Evolution, 2018, 8, 3161-3171.	1.9	48
41	Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Advances in Virus Research, 2018, 102, 177-197.	2.1	48
42	Asymmetric evolution of duplicate genes encoding the CCAATâ€binding factor NF‥ in plant genomes. New Phytologist, 2005, 165, 623-632.	7.3	47
43	Comparative labellum micromorphology of the sexually deceptive temperate orchid genus <i>Ophrys</i> : diverse epidermal cell types and multiple origins of structural colour. Botanical Journal of the Linnean Society, 2010, 162, 504-540.	1.6	47
44	The mirror crack'd: both pigment and structure contribute to the glossy blue appearance of the mirror orchid, <i>Ophrys speculum</i> . New Phytologist, 2012, 196, 1038-1047.	7.3	47
45	Buckling as an origin of ordered cuticular patterns in flower petals. Journal of the Royal Society Interface, 2013, 10, 20120847.	3.4	46
46	Low genetic diversity in the Scottish endemic Primula scotica Hook New Phytologist, 1995, 129, 147-153.	7.3	44
47	Characterization of <i>Linaria KNOX</i> genes suggests a role in petalâ€spur development. Plant Journal, 2011, 68, 703-714.	5.7	44
48	Flower Iridescence Increases Object Detection in the Insect Visual System without Compromising Object Identity. Current Biology, 2016, 26, 802-808.	3.9	43
49	Species arguments: clarifying competing concepts of species delimitation in the pseudo-copulatory orchid genus Ophrys. Botanical Journal of the Linnean Society, 2011, 165, 336-347.	1.6	41
50	Directional scattering from the glossy flower of <i>Ranunculus</i> : how the buttercup lights up your chin. Journal of the Royal Society Interface, 2012, 9, 1295-1301.	3.4	40
51	Molecular Mechanisms of Pollination Biology. Annual Review of Plant Biology, 2020, 71, 487-515.	18.7	39
52	Flower movement increases pollinator preference for flowers with better grip. Functional Ecology, 2012, 26, 941-947.	3.6	38
53	A truncated MYB transcription factor from Antirrhinum majus regulates epidermal cell outgrowth. Journal of Experimental Botany, 2007, 58, 1515-1524.	4.8	37
54	An Arabidopsis rhomboid protease has roles in the chloroplast and in flower development. Journal of Experimental Botany, 2012, 63, 3559-3570.	4.8	37

#	Article	IF	CITATIONS
55	A plant developmentalist's guide to paedomorphosis: reintroducing a classic concept to a new generation. Trends in Plant Science, 2010, 15, 241-246.	8.8	36
56	Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. New Phytologist, 2019, 222, 1123-1138.	7.3	34
57	Flower Inspiration: Broadâ€Angle Structural Color through Tunable Hierarchical Wrinkles in Thin Film Multilayers. Advanced Functional Materials, 2021, 31, 2006256.	14.9	34
58	How to spot a flower. New Phytologist, 2013, 197, 687-689.	7.3	33
59	Floral epidermal structure and flower orientation: getting to grips with awkward flowers. Arthropod-Plant Interactions, 2011, 5, 279-285.	1.1	32
60	The physics of pollinator attraction. New Phytologist, 2017, 216, 350-354.	7.3	32
61	Morphology and development of floral features recognised by pollinators. Arthropod-Plant Interactions, 2007, 1, 147-158.	1.1	30
62	Determining the Contribution of Epidermal Cell Shape to Petal Wettability Using Isogenic Antirrhinum Lines. PLoS ONE, 2011, 6, e17576.	2.5	30
63	Contributions of iridescence to floral patterning. Communicative and Integrative Biology, 2009, 2, 230-232.	1.4	29
64	Androecial evolution in Caryophyllales in light of a paraphyletic Molluginaceae. American Journal of Botany, 2013, 100, 1757-1778.	1.7	29
65	The land plantâ€specific MIXTAâ€MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land. New Phytologist, 2021, 229, 2324-2338.	7.3	29
66	Ultrastructure and optics of the prismâ€like petal epidermal cells of <i>Eschscholzia californica</i> (California poppy). New Phytologist, 2018, 219, 1124-1133.	7.3	28
67	Grip and slip. Communicative and Integrative Biology, 2009, 2, 505-508.	1.4	25
68	The impact of floral spot and ring markings on pollinator foraging dynamics. Evolutionary Ecology, 2017, 31, 193-204.	1.2	25
69	Wind gusts and plant aeroelasticity effects on the aerodynamics of pollen shedding: A hypothetical turbulence-initiated wind-pollination mechanism. Journal of Theoretical Biology, 2009, 259, 785-792.	1.7	24
70	Pollinator Attraction: The Importance of Looking Good and Smelling Nice. Current Biology, 2011, 21, R307-R309.	3.9	24
71	How Have Advances in Comparative Floral Development Influenced Our Understanding of Floral Evolution?. International Journal of Plant Sciences, 2015, 176, 307-323.	1.3	22
72	TTG1 proteins regulate circadian activity as well as epidermal cell fate and pigmentation. Nature Plants, 2019, 5, 1145-1153.	9.3	22

#	Article	IF	CITATIONS
73	The cellular and genetic basis of structural colour in plants. Current Opinion in Plant Biology, 2019, 47, 81-87.	7.1	21
74	The influence of pigmentation patterning on bumblebee foraging from flowers of Antirrhinum majus. Die Naturwissenschaften, 2013, 100, 249-256.	1.6	20
75	Flower-specific KNOX phenotype in the orchid Dactylorhiza fuchsii. Journal of Experimental Botany, 2012, 63, 4811-4819.	4.8	18
76	Direct Surface Analysis Coupled to High-Resolution Mass Spectrometry Reveals Heterogeneous Composition of the Cuticle of <i>Hibiscus trionum</i> Petals. Analytical Chemistry, 2015, 87, 9900-9907.	6.5	17
77	THE CONTRIBUTION OF EPIDERMAL STRUCTURE TO FLOWER COLOUR IN THE SOUTH AFRICAN FLORA. Curtis's Botanical Magazine, 2011, 28, 349-371.	0.3	14
78	CYTOKININ INDEPENDENT-1 regulates levels of different forms of cytokinin in Arabidopsis and mediates response to nutrient stress. Journal of Plant Physiology, 2008, 165, 251-261.	3.5	13
79	Mechanical buckling can pattern the light-diffracting cuticle of Hibiscus trionum. Cell Reports, 2021, 36, 109715.	6.4	13
80	The mechanics of nectar offloading in the bumblebee <i>Bombus terrestris</i> and implications for optimal concentrations during nectar foraging. Journal of the Royal Society Interface, 2020, 17, 20190632.	3.4	13
81	Cellular differentiation in the shoot epidermis. Current Opinion in Plant Biology, 1998, 1, 511-519.	7.1	11
82	Identifying the transporters of different flavonoids in plants. Plant Signaling and Behavior, 2010, 5, 860-863.	2.4	11
83	Is floral iridescence a biologically relevant cue in plant–pollinator signalling? A response to van der Kooi <i>etÂal</i> . (2014b). New Phytologist, 2015, 205, 21-22.	7.3	7
84	Disordered wax platelets on <i>Tradescantia pallida</i> leaves create golden shine. Faraday Discussions, 2020, 223, 207-215.	3.2	7
85	Cell wall composition determines handedness reversal in helicoidal cellulose architectures of <i>Pollia condensata</i> fruits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	7
86	Direct Depolymerization Coupled to Liquid Extraction Surface Analysis-High-Resolution Mass Spectrometry for the Characterization of the Surface of Plant Tissues. Analytical Chemistry, 2019, 91, 8326-8333.	6.5	5
87	Molecular biology for green recovery—A call for action. PLoS Biology, 2022, 20, e3001623.	5.6	5
88	Using structural colour to track length scale of cellâ€wall layers in developing <i>Pollia japonica</i> fruits. New Phytologist, 2021, 230, 2327-2336.	7.3	4
89	My favourite flowering image. Journal of Experimental Botany, 2013, 64, 5775-5777.	4.8	2
90	Joining the dots. Nature Plants, 2018, 4, 10-11.	9.3	2

#	Article	IF	CITATIONS
91	A synopsis of the Iberian clade of Linaria subsect. Versicolores (Antirrhineae, Plantaginaceae) based on integrative taxonomy. Plant Systematics and Evolution, 2018, 304, 871-884.	0.9	2
92	Evo–Devo: Tinkering with the Stem Cell Niche to Produce Thorns. Current Biology, 2020, 30, R873-R875.	3.9	2
93	Conical petal epidermal cells, regulated by the MYB transcription factor MIXTA, have an ancient origin within the angiosperms. Journal of Experimental Botany, 0, , .	4.8	2
94	Variety is the spice of life: the enormous diversity of plant biotic interactions. Current Opinion in Plant Biology, 2013, 16, 397-399.	7.1	1
95	The effect of the â€~Bee Gym™' grooming device on Varroa destructor mite fall from honey bee (Apis) Tj E1	Qq1510.7	784314 rgBT
96	Beverley Glover. Current Biology, 2018, 28, R248-R249.	3.9	0
97	Guest Essay A lesson for Botanic Gardens from the Covid-19 pandemic: reaching wider audiences through online activity. Sibbaldia the International Journal of Botanic Garden Horticulture, 2021, , .	0.1	0