
Xinbai Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/545562/publications.pdf Version: 2024-02-01

XINBAL LIANC

#	Article	IF	CITATIONS
1	Simultaneous high-concentration pyridine removal and denitrification in an electricity assisted bio-photodegradation system. Chemical Engineering Journal, 2022, 430, 132598.	12.7	18
2	Enhanced bio-photodegradation of p-chlorophenol by CdS/g-C3N4 3D semiconductor-microbe interfaces. Science of the Total Environment, 2022, 807, 151006.	8.0	22
3	Synthesis of magnetic hydrochar from Fenton sludge and sewage sludge for enhanced anaerobic decolorization of azo dye AO7. Journal of Hazardous Materials, 2022, 424, 127622.	12.4	15
4	Evaluation of N-methylpyrrolidone bio-mineralization mechanism and bacterial community evolution under denitrification environment. Journal of Cleaner Production, 2022, 343, 130945.	9.3	11
5	Ag-TiO2/biofilm/nitrate interface enhanced visible light-assisted biodegradation of tetracycline: The key role of nitrate as the electron accepter. Water Research, 2022, 215, 118212.	11.3	20
6	Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	6.0	3
7	Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine. Journal of Hazardous Materials, 2022, 437, 129370.	12.4	12
8	Simultaneous removal of pyridine and denitrification in an integrated bioelectro-photocatalytic system utilizing N-doped graphene/α-Fe2O3 modified photoanode. Electrochimica Acta, 2021, 366, 137425.	5.2	22
9	Recycle of Fenton sludge through one-step synthesis of aminated magnetic hydrochar for Pb2+ removal from wastewater. Journal of Hazardous Materials, 2021, 406, 124581.	12.4	34
10	Electricity-stimulated anaerobic system (ESAS) for enhanced energy recovery and pollutant removal: A critical review. Chemical Engineering Journal, 2021, 411, 128548.	12.7	25
11	Coupled biodegradation of p-nitrophenol and p-aminophenol in bioelectrochemical system: Mechanism and microbial functional diversity. Journal of Environmental Sciences, 2021, 108, 134-144.	6.1	19
12	Reductive potential from cathode electrode as an option for the achievement of short-cut nitrification in bioelectrochemical systems. Bioresource Technology, 2021, 338, 125553.	9.6	5
13	Carbon black supported on a Mn-MIL-100 framework as high-efficiency electrocatalysts for nitrophenol reduction. Journal of Electroanalytical Chemistry, 2021, 903, 115824.	3.8	8
14	Development of a Microalgal (<i>Chlorella</i>)-Bacterial (<i>Paracoccus</i>) Symbiotic System for Pyridine Biodegradation under Photosynthetic Oxygenation. ACS ES&T Water, 2021, 1, 356-365.	4.6	10
15	Facilitated bio-mineralization of N,N-dimethylformamide in anoxic denitrification system: Long-term performance and biological mechanism. Water Research, 2020, 186, 116306.	11.3	60
16	BiVO4/FeOOH semiconductor-microbe interface for enhanced visible-light-driven biodegradation of pyridine. Water Research, 2020, 187, 116464.	11.3	24
17	Optimization ofS/Fe ratio for enhanced nitrobenzene biological removal in anaerobicSystem amended withSulfide-modified nanoscale zerovalent iron. Chemosphere, 2020, 247, 125832.	8.2	23
18	Bioelectrodegradation of Hazardous Organic Contaminants from Industrial Wastewater. , 2019, , 93-119.		1

Xinbai Jiang

#	Article	IF	CITATIONS
19	Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods. Science of the Total Environment, 2019, 694, 133701.	8.0	52
20	Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron: Process and mechanisms. Environment International, 2019, 131, 105020.	10.0	59
21	Nitrate stimulation of N-Methylpyrrolidone biodegradation by Paracoccus pantotrophus: Metabolite mechanism and Genomic characterization. Bioresource Technology, 2019, 294, 122185.	9.6	28
22	Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	40
23	Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. Water Research, 2019, 157, 8-18.	11.3	50
24	1H-1,2,4-Triazole biodegradation by newly isolated Raoultella sp.: A novel biodegradation pathway. Bioresource Technology Reports, 2019, 6, 63-69.	2.7	8
25	Co-metabolic enhancement of 1H-1,2,4-triazole biodegradation through nitrification. Bioresource Technology, 2019, 271, 236-243.	9.6	29
26	Synthesis of Cu ₂ O–CuFe ₂ O ₄ microparticles from Fenton sludge and its application in the Fenton process: the key role of Cu ₂ O in the catalytic degradation of phenol. RSC Advances, 2018, 8, 5740-5748.	3.6	67
27	Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process. Chemical Engineering Journal, 2018, 338, 176-183.	12.7	49
28	Microbial degradation mechanism of pyridine by Paracoccus sp. NJUST30 newly isolated from aerobic granules. Chemical Engineering Journal, 2018, 344, 86-94.	12.7	86
29	Substantial enhancement of anaerobic pyridine bio-mineralization by electrical stimulation. Water Research, 2018, 130, 291-299.	11.3	101
30	Promotion of Para-Chlorophenol Reduction and Extracellular Electron Transfer in an Anaerobic System at the Presence of Iron-Oxides. Frontiers in Microbiology, 2018, 9, 2052.	3.5	17
31	Bioaugmentation strategy for the treatment of fungicide wastewater by two triazole-degrading strains. Chemical Engineering Journal, 2018, 349, 17-24.	12.7	36
32	Synergistic effect of pyrrolic N and graphitic N for the enhanced nitrophenol reduction of nitrogen-doped graphene-modified cathode in the bioelectrochemical system. Journal of Electroanalytical Chemistry, 2018, 823, 32-39.	3.8	17
33	Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole. Bioresource Technology, 2018, 264, 98-105.	9.6	44
34	Enhanced anoxic biodegradation of pyridine coupled to nitrification in an inner loop anoxic/oxic-dynamic membrane bioreactor (A/O-DMBR). Bioresource Technology, 2018, 267, 626-633.	9.6	42
35	Biochar supported sulfide-modified nanoscale zero-valent iron for the reduction of nitrobenzene. RSC Advances, 2018, 8, 22161-22168.	3.6	68
36	The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1,2,4-triazole from bio-treated chemical industrial wastewater. Environmental Science and Pollution Research, 2017, 24, 10570-10583.	5.3	12

XINBAI JIANG

#	Article	IF	CITATIONS
37	Fabrication of polypyrrole/β-MnO 2 modified graphite felt anode for enhancing recalcitrant phenol degradation in a bioelectrochemical system. Electrochimica Acta, 2017, 244, 119-128.	5.2	45
38	Aerobic granulation accelerated by biochar for the treatment of refractory wastewater. Chemical Engineering Journal, 2017, 314, 88-97.	12.7	77
39	Synthesis of hollow anatase nanospheres with excellent adsorption and photocatalytic performances. RSC Advances, 2017, 7, 41399-41402.	3.6	Ο
40	Comprehensive comparison of bacterial communities in a membrane-free bioelectrochemical system for removing different mononitrophenols from wastewater. Bioresource Technology, 2016, 216, 645-652.	9.6	44
41	Enhanced bioelectrochemical reduction of p-nitrophenols in the cathode of self-driven microbial fuel cells. RSC Advances, 2016, 6, 29072-29079.	3.6	18
42	Laccase-catalyzed electrochemical fabrication of polyaniline/graphene oxide composite onto graphite felt electrode and its application in bioelectrochemical system. Electrochimica Acta, 2016, 190, 16-24.	5.2	19
43	Efficient nitro reduction and dechlorination of 2,4-dinitrochlorobenzene through the integration of bioelectrochemical system into upflow anaerobic sludge blanket: A comprehensive study. Water Research, 2016, 88, 257-265.	11.3	102
44	Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater. Journal of Hazardous Materials, 2015, 295, 153-160.	12.4	64
45	Enhanced p-nitrophenol removal in a membrane-free bio-contact coupled bioelectrochemical system. RSC Advances, 2015, 5, 27052-27059.	3.6	9
46	Fabrication of polyaniline/graphene oxide composite for graphite felt electrode modification and its performance in the bioelectrochemical system. Journal of Electroanalytical Chemistry, 2015, 744, 95-100.	3.8	38
47	Coupling of a bioelectrochemical system for p-nitrophenol removal in an upflow anaerobic sludge blanket reactor. Water Research, 2014, 67, 11-18.	11.3	85
48	Degradation of p-nitrophenol by coupled cathodic reduction and anodic oxidation in a self-powered bioelectrochemical system and analysis of microbial community. , 0, 132, 179-187.		2
49	The catalytic properties of manganese oxides supported on a novel type of copper-containing silica gel for tricyclazole degradation with ozone. , 0, 171, 196-204.		2
50	Assembling nanoscale zero-valent iron on magnetic Fe3O4/reduced graphene oxide composite for efficient reduction of hexanitrohexaazaisowurtzitane (CL-20). , 0, 182, 225-236.		2