
Aichun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/545557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 2008, 38, 1036-1045.	1.2	592

 $_{2}$ Complete Resequencing of 40 Genomes Reveals Domestication Events and Genes in Silkworm () Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 7

3	Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, 2013, 4, 2445.	5.8	277
4	Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Applied Microbiology and Biotechnology, 2006, 71, 192-199.	1.7	74
5	Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco. Gene, 2018, 645, 95-104.	1.0	70
6	Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Molecular Biology Reports, 2008, 35, 329-335.	1.0	63
7	Novel Molecular and Mechanical Properties of Egg Case Silk from Wasp Spider, Argiope bruennichi. Biochemistry, 2006, 45, 3348-3356.	1.2	59
8	Chromosome-Level Reference Genome and Population Genomic Analysis Provide Insights into the Evolution and Improvement of Domesticated Mulberry (Morus alba). Molecular Plant, 2020, 13, 1001-1012.	3.9	59
9	New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Research, 2010, 19, 29-44.	1.3	55
10	Molecular cloning and expression analysis of mulberry MAPK gene family. Plant Physiology and Biochemistry, 2014, 77, 108-116.	2.8	53
11	Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2020, 6, 1290-1310.	2.6	50
12	Genome-Wide Identification and Characterization of Four Gene Families Putatively Involved in Cadmium Uptake, Translocation and Sequestration in Mulberry. Frontiers in Plant Science, 2018, 9, 879.	1.7	45
13	Genome-wide identification and characterization of the DREB transcription factor gene family in mulberry. Biologia Plantarum, 2015, 59, 253-265.	1.9	42
14	Characterization and Functional Analysis of 4-Coumarate:CoA Ligase Genes in Mulberry. PLoS ONE, 2016, 11, e0155814.	1.1	42
15	Isolation and characterization of a novel chalcone synthase gene family from mulberry. Plant Physiology and Biochemistry, 2017, 115, 107-118.	2.8	36
16	Mulberry Transcription Factor MnDREB4A Confers Tolerance to Multiple Abiotic Stresses in Transgenic Tobacco. PLoS ONE, 2015, 10, e0145619.	1.1	34
17	The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: A second blueprint for synthesizing de novo silk. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2013, 164, 151-158.	0.7	30
18	Cloning and expression of manganese superoxide dismutase of the silkworm, Bombyx mori by Bac-to-Bac/BmNPV Baculovirus expression system. Applied Microbiology and Biotechnology, 2006, 73, 181-186.	1.7	28

Αις Η ΑΟ

#	Article	IF	CITATIONS
19	Characterization of Stilbene Synthase Genes in Mulberry (<i>Morus atropurpurea</i>) and Metabolic Engineering for the Production of Resveratrol in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2017, 65, 1659-1668.	2.4	28
20	FLP Recombinase-Mediated Site-Specific Recombination in Silkworm, Bombyx mori. PLoS ONE, 2012, 7, e40150.	1,1	28
21	Unique Molecular Architecture of Egg Case Silk Protein in a Spider, Nephila clavata. Journal of Biochemistry, 2005, 138, 593-604.	0.9	26
22	Transcriptome and metabolome profiling unveiled mechanisms of tea (Camellia sinensis) quality improvement by moderate drought on pre-harvest shoots. Phytochemistry, 2020, 180, 112515.	1.4	24
23	Mulberry EIL3 confers salt and drought tolerances and modulates ethylene biosynthetic gene expression. PeerJ, 2019, 7, e6391.	0.9	24
24	Molecular characterization and expression analysis of the mulberry Na+/H+ exchanger gene family. Plant Physiology and Biochemistry, 2016, 99, 49-58.	2.8	23
25	Characterization and Expression of Genes Involved in the Ethylene Biosynthesis and Signal Transduction during Ripening of Mulberry Fruit. PLoS ONE, 2015, 10, e0122081.	1.1	20
26	Ectopic Expression of Mulberry G-Proteins Alters Drought and Salt Stress Tolerance in Tobacco. International Journal of Molecular Sciences, 2019, 20, 89.	1.8	20
27	InÂvivo site-specific integration of transgene in silkworm via PhiC31 integrase-mediated cassette exchange. Insect Biochemistry and Molecular Biology, 2013, 43, 997-1008.	1.2	19
28	New insight into the mechanism underlying fibroin secretion in silkworm, <i><scp>B</scp>ombyxÂmori</i> . FEBS Journal, 2015, 282, 89-101.	2.2	19
29	Characterization and expression of abscisic acid signal transduction genes during mulberry fruit ripening. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	19
30	Efficient strategies for changing the diapause character of silkworm eggs and for the germline transformation of diapause silkworm strains. Insect Science, 2012, 19, 172-182.	1.5	18
31	Isolation and expression analysis of anthocyanin biosynthetic genes in Morus alba L Biologia Plantarum, 2014, 58, 618-626.	1.9	17
32	QTL mapping of economically important traits in Silkworm (Bombyx mori). Science in China Series C: Life Sciences, 2004, 47, 477.	1.3	17
33	New Insights into the Structure-Function Relationship of the Endosomal-Type Na+, K+/H+ Antiporter NHX6 from Mulberry (Morus notabilis). International Journal of Molecular Sciences, 2020, 21, 428.	1.8	16
34	New insight into the mechanism of in vivo fibroin self-assembly and secretion in the silkworm, Bombyx mori. International Journal of Biological Macromolecules, 2021, 169, 473-479.	3.6	16
35	Plant G-protein Î ² subunits positively regulate drought tolerance by elevating detoxification of ROS. Biochemical and Biophysical Research Communications, 2017, 491, 897-902.	1.0	15
36	A meta-analysis of transcriptomic profiles reveals molecular pathways response to cadmium stress of Gramineae. Ecotoxicology and Environmental Safety, 2021, 209, 111816.	2.9	15

Αιςниν Ζηλο

#	Article	IF	CITATIONS
37	Screening, cloning and expression analysis of a cellulase derived from the causative agent of hypertrophy sorosis scleroteniosis, Ciboria shiraiana. Gene, 2015, 565, 221-227.	1.0	13
38	Characterization and expression analysis of cDNAs encoding abscisic acid 8′-hydroxylase during mulberry fruit maturation and under stress conditions. Plant Cell, Tissue and Organ Culture, 2016, 127, 237-249.	1.2	13
39	An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori. Scientific Reports, 2015, 5, 8802.	1.6	12
40	Mulberry MnMAPK1, a group C mitogen-activated protein kinase gene, endowed transgenic Arabidopsis with novel responses to various abiotic stresses. Plant Cell, Tissue and Organ Culture, 2017, 131, 151-162.	1.2	12
41	Functional analysis of drought and salt tolerance mechanisms of mulberry RACK1 gene. Tree Physiology, 2019, 39, 2055-2069.	1.4	12
42	Transgenic characterization of two silkworm tissueâ€specific promoters in the haemocyte plasmatocyte cells. Insect Molecular Biology, 2018, 27, 133-142.	1.0	11
43	De novo assembly of mulberry (Morus alba L.) transcriptome and identification of candidate unigenes related to salt stress responses. Russian Journal of Plant Physiology, 2017, 64, 738-748.	0.5	11
44	Genome Sequencing of <i>Ciboria shiraiana</i> Provides Insights into the Pathogenic Mechanisms of Hypertrophy Sorosis Scleroteniosis. Molecular Plant-Microbe Interactions, 2021, 34, 62-74.	1.4	10
45	Identification of the genes involved in heterotrimeric G-protein signaling in mulberry and their regulation by abiotic stresses and signal molecules. Biologia Plantarum, 2018, 62, 277-286.	1.9	9
46	Silkworm, Bombyx mori larvae expressed the spider silk protein through a novel Bac-to-Bac/BmNPV baculovirus. Journal of Applied Entomology, 2006, 130, 297-301.	0.8	8
47	Function analysis of anthocyanidin synthase from Morus alba L. by expression in bacteria and tobacco. Electronic Journal of Biotechnology, 2018, 36, 9-14.	1.2	8
48	Heterotrimeric G-protein Î ³ subunits regulate ABA signaling in response to drought through interacting with PP2Cs and SnRK2s in mulberry (Morus alba L.). Plant Physiology and Biochemistry, 2021, 161, 210-221.	2.8	8
49	Genome-wide identification and characterization of genes involved in melatonin biosynthesis in Morus notabilis (wild mulberry). Phytochemistry, 2021, 189, 112819.	1.4	8
50	Biological study of hypertrophy sorosis scleroteniosis and its molecular characterization based on LSU rRNA. African Journal of Microbiology Research, 2013, 7, 3405-3411.	0.4	8
51	lonomics, transcriptomics and untargeted metabolomics analyses provide new insights into the Cd response and accumulation mechanisms of mulberry. Environmental and Experimental Botany, 2022, 196, 104821.	2.0	8
52	Mulberry RGS negatively regulates salt stress response and tolerance. Plant Signaling and Behavior, 2019, 14, 1672512.	1.2	7
53	Cloning, Overexpression, and Functional Characterization of a Phytase from the Genus Bacillus. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 193-202.	1.0	6
54	Characterization and expression profiles of MaACS and MaACO genes from mulberry (Morus alba L.). Journal of Zhejiang University: Science B, 2014, 15, 611-623.	1.3	6

Αις Η ΑΟ

#	Article	IF	CITATIONS
55	Genetic hybridization of highly active exogenous functional proteins into silk-based materials using "light-clothing―strategy. Matter, 2021, 4, 2039-2058.	5.0	6
56	Cross Infection, Biological Characteristics and Genetic Relationship between Pathogens of Hypertrophy Sorosis Sclerotenisis from Mulberry and Sclerotinia Stem Rot from Oilseed Rape. Acta Agronomica Sinica(China), 2015, 41, 42.	0.1	6
57	Host-Induced Gene Silencing of a G Protein α Subunit Gene CsGpa1 Involved in Pathogen Appressoria Formation and Virulence Improves Tobacco Resistance to Ciboria shiraiana. Journal of Fungi (Basel,) Tj ETQq1 1	0.78.45314	rg B a /Overlo
58	Highly efficient and inducible DNA excision in transgenic silkworms using the FLP/FRT site-specific recombination system. Transgenic Research, 2016, 25, 795-811.	1.3	5
59	Molecular Mechanisms Underlying the Biosynthesis of Melatonin and Its Isomer in Mulberry. Frontiers in Plant Science, 2021, 12, 708752.	1.7	5
60	An APSES Transcription Factor Xbp1 Is Required for Sclerotial Development, Appressoria Formation, and Pathogenicity in Ciboria shiraiana. Frontiers in Microbiology, 2021, 12, 739686.	1.5	4
61	Multiple Interval Mapping for Whole Cocoon Weight and Related Economically Important Traits QTL in Silkworm (Bombyx mori). Agricultural Sciences in China, 2006, 5, 798-804.	0.6	3
62	A MITE Insertion in the Promoter Region of Anthocyanidin Synthase from Morus alba L. Plant Molecular Biology Reporter, 2018, 36, 188-194.	1.0	3
63	The C-terminal tail of the plant endosomal-type NHXs plays a key role in its function and stability. Plant Science, 2021, 303, 110791.	1.7	3
64	Molecular Cloning and Tissues Expression Analysis of Three <i>Actin</i> Genes from Mulberry (<i>Morus alba</i>). Acta Agronomica Sinica(China), 2011, 37, 641-649.	0.1	3
65	Isolation and Expression of Mulberry (<i>Morus alba</i> L.) <i>EIN2</i> Gene. Acta Agronomica Sinica(China), 2014, 40, 1205.	0.1	2
66	Cloning and Functional Analysis of Polygalacturo-nase Genes fromCiboria shiraiana. Acta Agronomica Sinica(China), 2016, 42, 190.	0.1	2
67	Functional Analysis of 1-Aminocyclopropane-1-carboxylate Oxidase Gene's Promoter in Mulberry. Acta Agronomica Sinica(China), 2017, 43, 839.	0.1	2
68	Stably Express Spider Flagelliform Silk Protein in Bombyx Mori Cell Line by PiggyBac Transposon-Derived Vector. Advanced Materials Research, 0, 332-334, 779-782.	0.3	1
69	Potential for genetic improvement of silkworm through molecular and transgenic approaches CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-9.	0.6	1
70	Molecular Cloning and Functional Analysis of Polygalacturonase-Inhibiting Protein Gene <i>MaPGIP1</i> from Mulberry(<i>Morus atropurpurea</i> Roxb.). Acta Agronomica Sinica(China), 2015, 41, 1361.	0.1	1
71	Molecular Cloning and Information Analysis of <i>ANS</i> Genes Encoding Anthocyanin Synthases from Mulberry (<i>Morus alba</i>). Acta Agronomica Sinica(China), 2013, 38, 1253-1263.	0.1	0