Hanna Hõrak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5455157/publications.pdf

Version: 2024-02-01

29	743	10	22
papers	citations	h-index	g-index
33	33	33	1237 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	MYB16 expression in the stomatal lineage: wrong place at the wrong time leads to stomata side-by-side. Plant Cell, 2022, 34, 8-9.	6.6	O
2	As above, so below: CLE peptide signaling in shoot and root apical meristems. Plant Cell, 2022, , .	6.6	0
3	Dynamic thermal imaging confirms local but not fast systemic <scp>ABA</scp> responses. Plant, Cell and Environment, 2021, 44, 885-899.	5 . 7	6
4	How to achieve immune balance and harmony: glycosyltransferase UGT76B1 inactivates <i>N</i> -hydroxy-pipecolic acid to suppress defense responses. Plant Cell, 2021, 33, 453-454.	6.6	3
5	Leaf temperature responses to ABA and dead bacteria in wheat and Arabidopsis. Plant Signaling and Behavior, 2021, 16, 1899471.	2.4	1
6	How stomata see the light: the complex blues of PHOTs and BLUS1. Plant Cell, 2021, 33, 1413-1414.	6.6	0
7	Shaping a flexoskeleton: pectate lyase PLL12 facilitates stomatal movements. Plant Cell, 2021, 33, 2908-2909.	6.6	1
8	Tracking the Courier: In Planta Imaging of NADH/NAD+ Ratios with a Genetically Encoded Biosensor. Plant Cell, 2020, 32, 3055-3056.	6.6	1
9	How COR27 and COR28 Promote Hypocotyl Growth: Bind to COP1 and Suppress HY5 Activity. Plant Cell, 2020, 32, 3045-3046.	6.6	1
10	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	1.9	13
11	Remodeling Flowering: CHROMATIN REMODELING4 Promotes the Floral Transition. Plant Cell, 2020, 32, 1346-1347.	6.6	O
12	Telling Footprints: Exon Junction Complexes Mark Targets of Nonsense- and miRNA-Mediated mRNA Decay. Plant Cell, 2020, 32, 787-788.	6.6	2
13	Defense, Fast and Slow: Activation of Different MAPK Pathways in Response to Wounding. Plant Cell, 2020, 32, 1788-1789.	6.6	8
14	Application of widely used fungicides does not necessarily affect grain yield, and incidence of Fusarium spp. and mycotoxins DON, HT-2 and T-2 in spring barley in northern climates. Kvasný PrŬmysl, 2020, 66, .	0.2	6
15	Back to Where It Came From: Chloroplast Expression of Both Rubisco Subunits Helps Functional Enzyme Analysis. Plant Cell, 2020, 32, 2677-2678.	6.6	O
16	Zones of Defense? SA Receptors Have It Under Control. Plant Cell, 2020, 32, 3658-3659.	6.6	1
17	Zones of Defense? SA Receptors Have It Under Control. Plant Cell, 2020, 32, 3658-3659.	6.6	2
18	Bacterial infection systemically suppresses stomatal density. Plant, Cell and Environment, 2019, 42, 2411-2421.	5.7	37

#	Article	IF	CITATIONS
19	Mitogenâ€activated protein kinases <scp>MPK</scp> 4 and <scp>MPK</scp> 12 are key components mediating <scp>CO</scp> ₂ â€induced stomatal movements. Plant Journal, 2018, 96, 1018-1035.	5.7	49
20	The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure. Plant Cell, 2018, 30, 2813-2837.	6.6	95
21	Fern Stomatal Responses to ABA and CO ₂ Depend on Species and Growth Conditions. Plant Physiology, 2017, 174, 672-679.	4.8	74
22	Learning from the experts: drought resistance in desert plants. New Phytologist, 2017, 216, 5-7.	7.3	4
23	A Dominant Mutation in the HT1 Kinase Uncovers Roles of MAP Kinases and GHR1 in CO ₂ -Induced Stomatal Closure. Plant Cell, 2016, 28, 2493-2509.	6.6	89
24	The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening. Current Biology, 2016, 26, 707-712.	3.9	111
25	Natural Variation in Arabidopsis Cvi-O Accession Reveals an Important Role of MPK12 in Guard Cell CO2 Signaling. PLoS Biology, 2016, 14, e2000322.	5.6	69
26	Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation. Molecular Plant, 2015, 8, 1321-1333.	8.3	98
27	Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in <scp><i>A</i></scp> <i>rabidopsis thaliana</i> . Plant, Cell and Environment, 2015, 38, 1418-1433.	5.7	36
28	ERD15—An attenuator of plant ABA responses and stomatal aperture. Plant Science, 2012, 182, 19-28.	3.6	34
29	Important ions: impairment of potassium exchangers disrupts chloroplast gene expression. Plant Cell, 0, , .	6.6	1