
Oliveira Rs; Oliveira R

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5454862/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Savanna–Forest Coexistence Across a Fire Gradient. Ecosystems, 2022, 25, 279-290.	1.6	3
2	How effective is direct seeding to restore the functional composition of neotropical savannas?. Restoration Ecology, 2022, 30, e13474.	1.4	11
3	Small understorey trees have greater capacity than canopy trees to adjust hydraulic traits following prolonged experimental drought in a tropical forest. Tree Physiology, 2022, 42, 537-556.	1.4	7
4	Local hydrological gradients structure high intraspecific variability in plant hydraulic traits in two dominant central Amazonian tree species. Journal of Experimental Botany, 2022, 73, 939-952.	2.4	15
5	Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. Journal of Applied Ecology, 2022, 59, 1967-1975.	1.9	38
6	Variation of nonâ€structural carbohydrates across the fast–slow continuum in Amazon Forest canopy trees. Functional Ecology, 2022, 36, 341-355.	1.7	9
7	Forest system hydraulic conductance: partitioning tree and soil components. New Phytologist, 2022, 233, 1667-1681.	3.5	6
8	Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 2022, 28, 2622-2638.	4.2	35
9	Phytogeographical origin determines Tropical Montane Cloud Forest hydraulic trait composition. Functional Ecology, 2022, 36, 607-621.	1.7	3
10	Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products. Scientific Reports, 2022, 12, 1588.	1.6	13
11	Distinct leaf water potential regulation of tree species and vegetation types across the Cerrado–Amazonia transition. Biotropica, 2022, 54, 431-443.	0.8	6
12	Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nature Communications, 2022, 13, 917.	5.8	20
13	Acaulescence promotes speciation and shapes the distribution patterns of palms in Neotropical seasonally dry habitats. Ecography, 2022, 2022, .	2.1	2
14	Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 2022, 3, 294-308.	12.2	163
15	Nurse-target functional match explains plant facilitation strength. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 292, 152061.	0.6	5
16	Abandoned pastures and restored savannas have distinct patterns of plant–soil feedback and nutrient cycling compared with native Brazilian savannas. Journal of Applied Ecology, 2022, 59, 1863-1873.	1.9	2
17	Local drivers of heterogeneity in a tropical forest: epiphytic tank bromeliads affect the availability of soil resources and conditions and indirectly affect the structure of seedling communities. Oecologia, 2022, 199, 205-215.	0.9	8
18	Strategies to acquire and use phosphorus in phosphorus-impoverished and fire-prone environments. Plant and Soil, 2022, 476, 133-160.	1.8	22

#	Article	IF	CITATIONS
19	The influence of vegetation water dynamics on the ASCAT backscatter–incidence angle relationship in the Amazon. Hydrology and Earth System Sciences, 2022, 26, 2997-3019.	1.9	4
20	Determining ecosystem functioning in Brazilian biomes through foliar carbon and nitrogen concentrations and stable isotope ratios. Biogeochemistry, 2021, 154, 405-423.	1.7	8
21	Towards the flower economics spectrum. New Phytologist, 2021, 229, 665-672.	3.5	41
22	A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restoration Ecology, 2021, 29, e13292.	1.4	45
23	Plant traits controlling growth change in response to a drier climate. New Phytologist, 2021, 229, 1363-1374.	3.5	26
24	Using the Pneumatic method to estimate embolism resistance in species with long vessels: A commentary on the article "A comparison of five methods to assess embolism resistance in trees― Forest Ecology and Management, 2021, 479, 118547.	1.4	13
25	The response of carbon assimilation and storage to longâ€ŧerm drought in tropical trees is dependent on light availability. Functional Ecology, 2021, 35, 43-53.	1.7	14
26	Effects of irrigation on oil palm transpiration during ENSO-induced drought in the Brazilian Eastern Amazon. Agricultural Water Management, 2021, 245, 106569.	2.4	12
27	Tropical riparian forests in danger from large savanna wildfires. Journal of Applied Ecology, 2021, 58, 419-430.	1.9	20
28	Root positioning and trait shifts in <i>Hibbertia racemosa</i> as dependent on its neighbour's nutrientâ€acquisition strategy. Plant, Cell and Environment, 2021, 44, 1257-1267.	2.8	11
29	Light- and nutrient-related relationships in mixed plantations of Eucalyptus and a high diversity of native tree species. New Forests, 2021, 52, 807-828.	0.7	2
30	Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytologist, 2021, 230, 904-923.	3.5	123
31	Traits related to efficient acquisition and use of phosphorus promote diversification in Proteaceae in phosphorusâ€impoverished landscapes. Plant and Soil, 2021, 462, 67-88.	1.8	26
32	Conservation biology: four decades of problem- and solution-based research. Perspectives in Ecology and Conservation, 2021, 19, 121-130.	1.0	12
33	Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nature Communications, 2021, 12, 2310.	5.8	59
34	Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in central Amazon. Oecologia, 2021, 197, 13-24.	0.9	13
35	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
36	Harvesting water from unsaturated atmospheres: deliquescence of salt secreted onto leaf surfaces drives reverse sap flow in a dominant arid climate mangrove, <i>Avicennia marina</i> . New Phytologist, 2021, 231, 1401-1414.	3.5	30

Oliveira Rs; Oliveira R

#	Article	IF	CITATIONS
37	A User Manual to Measure Gas Diffusion Kinetics in Plants: Pneumatron Construction, Operation, and Data Analysis. Frontiers in Plant Science, 2021, 12, 633595.	1.7	5
38	Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. Science of the Total Environment, 2021, 773, 145066.	3.9	17
39	Inoculum origin and soil legacy can shape plant–soil feedback outcomes for tropical grassland restoration. Restoration Ecology, 2021, 29, e13455.	1.4	9
40	Variable tree rooting strategies are key for modelling the distribution, productivity and evapotranspiration of tropical evergreen forests. Biogeosciences, 2021, 18, 4091-4116.	1.3	11
41	Hydraulic prediction of droughtâ€induced plant dieback and topâ€kill depends on leaf habit and growth form. Ecology Letters, 2021, 24, 2350-2363.	3.0	31
42	LTâ€Brazil: A database of leaf traits across biomes and vegetation types in Brazil. Global Ecology and Biogeography, 2021, 30, 2136-2146.	2.7	8
43	Desiccation tolerance implies costs to productivity but allows survival under extreme drought conditions in Velloziaceae species in campos rupestres. Environmental and Experimental Botany, 2021, 189, 104556.	2.0	6
44	Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 2021, 27, 6005-6024.	4.2	73
45	No evidence of positive feedback between litter deposition and seedling growth rate in Neotropical savannas. Plant and Soil, 2021, 469, 305-320.	1.8	3
46	Biogeomorphological evolution of rocky hillslopes driven by roots in campos rupestres, Brazil. Geomorphology, 2021, 395, 107985.	1.1	7
47	Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	34
48	Tradeoffs and Synergies in Tropical Forest Root Traits and Dynamics for Nutrient and Water Acquisition: Field and Modeling Advances. Frontiers in Forests and Global Change, 2021, 4, .	1.0	13
49	Chapter 24: Resilience of the Amazon forest to global changes: Assessing the risk of tipping points. , 2021, , .		5
50	Soil erosion as a resilience drain in disturbed tropical forests. Plant and Soil, 2020, 450, 11-25.	1.8	43
51	The Pneumatron: An automated pneumatic apparatus for estimating xylem vulnerability to embolism at high temporal resolution. Plant, Cell and Environment, 2020, 43, 131-142.	2.8	33
52	Stomatal optimization based on xylem hydraulics (SOX) improves land surface model simulation of vegetation responses to climate. New Phytologist, 2020, 226, 1622-1637.	3.5	95
53	Molecular responses to freshwater limitation in the mangrove tree <i>Avicennia germinans</i> (Acanthaceae). Molecular Ecology, 2020, 29, 344-362.	2.0	12
54	The Neglected Reverse Water Pathway: Atmosphere–Plant–Soil Continuum. Trends in Plant Science, 2020, 25, 1073-1075.	4.3	13

#	Article	IF	CITATIONS
55	Small tropical forest trees have a greater capacity to adjust carbon metabolism to longâ€ŧerm drought than large canopy trees. Plant, Cell and Environment, 2020, 43, 2380-2393.	2.8	22
56	Biodiversity and ecosystem services in the Campo Rupestre: A road map for the sustainability of the hottest Brazilian biodiversity hotspot. Perspectives in Ecology and Conservation, 2020, 18, 213-222.	1.0	34
57	A Soft Computing Approach for Selecting and Combining Spectral Bands. Remote Sensing, 2020, 12, 2267.	1.8	5
58	Towards more sustainable cropping systems: lessons from native Cerrado species. Theoretical and Experimental Plant Physiology, 2020, 32, 175-194.	1.1	18
59	Drought response strategies of deciduous and evergreen woody species in a seasonally dry neotropical forest. Oecologia, 2020, 194, 221-236.	0.9	29
60	How Climate Shapes the Functioning of Tropical Montane Cloud Forests. Current Forestry Reports, 2020, 6, 97-114.	3.4	17
61	Mythâ€busting tropical grassy biome restoration. Restoration Ecology, 2020, 28, 1067-1073.	1.4	50
62	Costs and benefits of gas inside wood and its relationship with anatomical traits: a contrast between trees and lianas. Tree Physiology, 2020, 40, 856-868.	1.4	2
63	Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to longâ€ŧerm drought. Global Change Biology, 2020, 26, 3569-3584.	4.2	56
64	Vellozioid roots allow for habitat specialization among rock―and soilâ€dwelling Velloziaceae in <i>campos rupestres</i> . Functional Ecology, 2020, 34, 442-457.	1.7	19
65	Crossing thresholds on the way to ecosystem shifts. Science, 2020, 367, 739-740.	6.0	6
66	Editorial special issue: plant-soil interactions in the Amazon rainforest. Plant and Soil, 2020, 450, 1-9.	1.8	4
67	Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. Journal of Ecology, 2019, 107, 318-333.	1.9	133
68	Shoot surface water uptake enables leaf hydraulic recovery in <i>Avicennia marina</i> . New Phytologist, 2019, 224, 1504-1511.	3.5	23
69	Microbiomes of Velloziaceae from phosphorus-impoverished soils of the campos rupestres, a biodiversity hotspot. Scientific Data, 2019, 6, 140.	2.4	10
70	How do lianas and trees change their vascular strategy in seasonal versus rain forest?. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125465.	1.1	11
71	How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation?. Plant Biology, 2019, 21, 1097-1109.	1.8	25
72	Tucumã: A toolbox for spatiotemporal remote sensing image analysis [Software and Data Sets]. IEEE Geoscience and Remote Sensing Magazine, 2019, 7, 110-122.	4.9	4

Oliveira Rs; Oliveira R

#	Article	IF	CITATIONS
73	Do cluster roots of red alder play a role in nutrient acquisition from bedrock?. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11575-11576.	3.3	11
74	Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niñoâ€induced drought. New Phytologist, 2019, 223, 1253-1266.	3.5	58
75	Foliar water uptake in Amazonian trees: Evidence and consequences. Global Change Biology, 2019, 25, 2678-2690.	4.2	45
76	A 7000â€year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecology Letters, 2019, 22, 925-935.	3.0	36
77	Specialized roots of Velloziaceae weather quartzite rock while mobilizing phosphorus using carboxylates. Functional Ecology, 2019, 33, 762-773.	1.7	37
78	Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nature Geoscience, 2019, 12, 174-179.	5.4	65
79	Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Scientific Reports, 2019, 9, 19936.	1.6	19
80	Plant Physiological Ecology. , 2019, , .		139
81	Soil types select for plants with matching nutrientâ€acquisition and â€use traits in hyperdiverse and severely nutrientâ€impoverished <i>campos rupestres</i> and <i>cerrado</i> in Central Brazil. Journal of Ecology, 2019, 107, 1302-1316.	1.9	47
82	lsotopic Evidence that Nitrogen Enrichment Intensifies Nitrogen Losses to the Atmosphere from Subtropical Mangroves. Ecosystems, 2019, 22, 1126-1144.	1.6	13
83	The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agricultural and Forest Meteorology, 2019, 265, 359-369.	1.9	26
84	Embolism resistance drives the distribution of Amazonian rainforest tree species along hydroâ€ŧopographic gradients. New Phytologist, 2019, 221, 1457-1465.	3.5	123
85	Plant Water Relations. , 2019, , 187-263.		25
86	Mineral Nutrition. , 2019, , 301-384.		17
87	Biotic Influences: Symbiotic Associations. , 2019, , 487-540.		3
88	Growth and Allocation. , 2019, , 385-449.		5
89	Introduction: History, Assumptions, and Approaches. , 2019, , 1-10.		5
90	Biotic Influences: Carnivory. , 2019, , 649-664.		0

#	Article	IF	CITATIONS
91	Role in Ecosystem and Global Processes: Decomposition. , 2019, , 665-676.		Ο
92	Life Cycles: Environmental Influences and Adaptations. , 2019, , 451-486.		3
93	Ageâ€dependent leaf physiology and consequences for crownâ€scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist, 2018, 219, 870-884.	3.5	66
94	Drought stress and tree size determine stem <scp>CO</scp> ₂ efflux in a tropical forest. New Phytologist, 2018, 218, 1393-1405.	3.5	26
95	Eudicots from severely phosphorusâ€impoverished environments preferentially allocate phosphorus to their mesophyll. New Phytologist, 2018, 218, 959-973.	3.5	54
96	Phosphorus―and nitrogenâ€acquisition strategies in two Bossiaea species (Fabaceae) along retrogressive soil chronosequences in southâ€western Australia. Physiologia Plantarum, 2018, 163, 323-343.	2.6	18
97	Proteaceae from phosphorusâ€impoverished habitats preferentially allocate phosphorus to photosynthetic cells: An adaptation improving phosphorusâ€use efficiency. Plant, Cell and Environment, 2018, 41, 605-619.	2.8	90
98	Testing the plant pneumatic method to estimate xylem embolism resistance in stems of temperate trees. Tree Physiology, 2018, 38, 1016-1025.	1.4	47
99	Xylem hydraulic safety and construction costs determine tropical tree growth. Plant, Cell and Environment, 2018, 41, 548-562.	2.8	70
100	Combining Eucalyptus wood production with the recovery of native tree diversity in mixed plantings: Implications for water use and availability. Forest Ecology and Management, 2018, 418, 34-40.	1.4	33
101	Ecohydrological drivers of Neotropical vegetation in montane ecosystems. Ecohydrology, 2018, 11, e1932.	1.1	40
102	High abundance of non-mycorrhizal plant species in severely phosphorus-impoverished Brazilian campos rupestres. Plant and Soil, 2018, 424, 255-271.	1.8	31
103	Stand dynamics modulate water cycling and mortality risk in droughted tropical forest. Global Change Biology, 2018, 24, 249-258.	4.2	39
104	ldeas and perspectives: Tree–atmosphere interaction responds to water-related stem variations. Biogeosciences, 2018, 15, 6439-6449.	1.3	9
105	Tree Sway Time Series of 7 Amazon Tree Species (July 2015–May 2016). Frontiers in Earth Science, 2018, 6,	0.8	1
106	Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170315.	1.8	69
107	Tall Amazonian forests are less sensitive to precipitation variability. Nature Geoscience, 2018, 11, 405-409.	5.4	126
108	The importance of phyllosphere on plant functional ecology: aÂphyllo trait manifesto. New Phytologist, 2018, 219, 1145-1149.	3.5	36

OLIVEIRA RS; OLIVEIRA R

#	Article	IF	CITATIONS
109	Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate. New Phytologist, 2018, 219, 1252-1262.	3.5	35
110	Can traits predict individual growth performance? A test in a hyperdiverse tropical forest. New Phytologist, 2018, 219, 109-121.	3.5	98
111	Natural History of a Sit-and-Wait Dipteran Predator That Uses Extrafloral Nectar as Prey Attractant. Environmental Entomology, 2018, 47, 1165-1172.	0.7	3
112	Infrared Nanospectroscopy Reveals the Chemical Nature of Pit Membranes in Water-Conducting Cells of the Plant Xylem. Plant Physiology, 2018, 177, 1629-1638.	2.3	47
113	Pneumatic Method to Measure Plant Xylem Embolism. Bio-protocol, 2018, 8, e3059.	0.2	17
114	Leaf water storage increases with salinity and aridity in the mangrove <i>Avicennia marina</i> : integration of leaf structure, osmotic adjustment and access to multiple water sources. Plant, Cell and Environment, 2017, 40, 1576-1591.	2.8	71
115	The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytologist, 2017, 215, 113-125.	3.5	94
116	Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. Oecologia, 2017, 183, 841-848.	0.9	23
117	Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant and Soil, 2017, 410, 1-19.	1.8	95
118	Coordination of rooting depth and leaf hydraulic traits defines drought-related strategies in the campos rupestres, a tropical montane biodiversity hotspot. Plant and Soil, 2017, 420, 467-480.	1.8	39
119	Water stress detection in the Amazon using radar. Geophysical Research Letters, 2017, 44, 6841-6849.	1.5	25
120	Effects of nitrogen availability on the competitive interactions between an invasive and a native grass from Brazilian cerrado. Plant and Soil, 2017, 410, 63-72.	1.8	20
121	Inoculation with Azospirillum brasilense (Ab-V4, Ab-V5) increases Zea mays root carboxylate-exudation rates, dependent on soil phosphorus supply. Plant and Soil, 2017, 410, 499-507.	1.8	21
122	Measuring Tree Properties and Responses Using Low-Cost Accelerometers. Sensors, 2017, 17, 1098.	2.1	38
123	Species-Specific Effects of Ant Inhabitants on Bromeliad Nutrition. PLoS ONE, 2016, 11, e0152113.	1.1	15
124	Plant pneumatics: stem air flow is related to embolism – new perspectives on methods in plant hydraulics. New Phytologist, 2016, 211, 357-370.	3.5	75
125	Why is liana abundance low in semiarid climates?. Austral Ecology, 2016, 41, 559-571.	0.7	13

126 Ecophysiology of Campos Rupestres Plants. , 2016, , 227-272.

#	Article	IF	CITATIONS
127	On xylem hydraulic efficiencies, wood spaceâ€use and the safety–efficiency tradeoff. New Phytologist, 2016, 211, 1152-1155.	3.5	58
128	Trade-off between soluble protein production and nutritional storage in Bromeliaceae. Annals of Botany, 2016, 118, 1199-1208.	1.4	12
129	Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytologist, 2016, 211, 489-501.	3.5	95
130	Dew absorption by the leaf trichomes of Combretum leprosum in the Brazilian semiarid region. Functional Plant Biology, 2016, 43, 851.	1.1	50
131	Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees - Structure and Function, 2016, 30, 47-61.	0.9	29
132	Disturbance maintains alternative biome states. Ecology Letters, 2016, 19, 12-19.	3.0	181
133	Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil, 2016, 403, 129-152.	1.8	467
134	Cluster-root formation and carboxylate release in Euplassa cantareirae (Proteaceae) from a neotropical biodiversity hotspot. Plant and Soil, 2016, 403, 267-275.	1.8	15
135	Effects of soil water availability on foliar water uptake of Araucaria angustifolia. Plant and Soil, 2016, 399, 147-157.	1.8	40
136	Carbon assimilation and habitat segregation inÂresurrection plants: a comparison between desiccation― and nonâ€desiccationâ€ŧolerant species of Neotropical Velloziaceae (Pandanales). Functional Ecology, 2015, 29, 1499-1512.	1.7	42
137	Hydraulic architecture of lianas in a semiarid climate: efficiency or safety?. Acta Botanica Brasilica, 2015, 29, 198-206.	0.8	12
138	Divergências funcionais e estratégias de resistência à seca entre espécies decÃduas e sempre verdes tropicais. Rodriguesia, 2015, 66, 21-32.	0.9	18
139	Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 2015, 528, 119-122.	13.7	482
140	Convergence of soil nitrogen isotopes across global climate gradients. Scientific Reports, 2015, 5, 8280.	1.6	127
141	Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiology, 2015, 35, 387-399.	1.4	47
142	Mineral nutrition of <i>campos rupestres</i> plant species on contrasting nutrientâ€impoverished soil types. New Phytologist, 2015, 205, 1183-1194.	3.5	149
143	Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science, 2015, 20, 83-90.	4.3	251
144	The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany, 2014, 113, 909-920.	1.4	91

#	Article	IF	CITATIONS
145	Does cluster-root activity benefit nutrient uptake and growth of co-existing species?. Oecologia, 2014, 174, 23-31.	0.9	80
146	Changing precipitation regimes and the water and carbon economies of trees. Theoretical and Experimental Plant Physiology, 2014, 26, 65-82.	1.1	31
147	Convergence of a specialized root trait in plants from nutrient-impoverished soils: phosphorus-acquisition strategy in a nonmycorrhizal cactus. Oecologia, 2014, 176, 345-355.	0.9	50
148	Soil pH accounts for differences in species distribution and leaf nutrient concentrations of Brazilian woodland savannah and seasonally dry forest species. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 64-74.	1.1	54
149	Can hydraulic traits be used to predict sensitivity of drought-prone forests to crown decline and tree mortality?. Plant and Soil, 2013, 364, 1-3.	1.8	6
150	Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, <i><scp>D</scp>rimys brasiliensis</i> (<scp>W</scp> interaceae). New Phytologist, 2013, 199, 151-162.	3.5	258
151	Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment. Annals of Botany, 2013, 111, 445-454.	1.4	67
152	Viminaria juncea does not vary its shoot phosphorus concentration and only marginally decreases its mycorrhizal colonization and cluster-root dry weight under a wide range of phosphorus supplies. Annals of Botany, 2013, 111, 801-809.	1.4	13
153	Underground leaves of <i>Philcoxia</i> trap and digest nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1154-1158.	3.3	50
154	Diversity in nighttime transpiration behavior of woody species of the Atlantic Rain Forest, Brazil. Agricultural and Forest Meteorology, 2012, 158-159, 13-20.	1.9	55
155	The effect of tetraploidization of wild Arachis on leaf morphology and other drought-related traits. Environmental and Experimental Botany, 2012, 84, 17-24.	2.0	52
156	Functional differences between woodland savannas and seasonally dry forests from south-eastern Brazil: Evidence from 15N natural abundance studies. Austral Ecology, 2011, 36, 974-982.	0.7	17
157	Savanna soil fertility limits growth but not survival of tropical forest tree seedlings. Plant and Soil, 2011, 349, 341-353.	1.8	36
158	Fine root biomass and root length density in a lowland and a montane tropical rain forest, SP, Brazil. Biota Neotropica, 2011, 11, 203-209.	1.0	19
159	Is leaf water repellency related to vapor pressure deficit and crown exposure in tropical forests?. Acta Oecologica, 2010, 36, 645-649.	0.5	31
160	The Drought of Amazonia in 2005. Journal of Climate, 2008, 21, 495-516.	1.2	582
161	Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 2007, 27, 561-575.	1.4	384
162	The Use of Carbon and Nitrogen Stable Isotopes to Track Effects of Landâ€Use Changes in the Brazilian Amazon Region. Journal of Nano Education (Print), 2007, , 301-318.	0.3	4

#	Article	IF	CITATIONS
163	The Use of Carbon and Nitrogen Stable Isotopes to Track Effects of Land-Use Changes in the Brazilian Amazon Region. , 2007, , 301-318.		0
164	Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia, 2006, 150, 181-189.	0.9	27
165	Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology, 2005, 19, 574-581.	1.7	246
166	Hydraulic redistribution in three Amazonian trees. Oecologia, 2005, 145, 354-363.	0.9	290
167	Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil. Journal of Tropical Ecology, 2005, 21, 585-588.	0.5	69
168	Root functioning modifies seasonal climate. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17576-17581.	3.3	279
169	Clobal overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. , 0, .		1