V V Romaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5454796/publications.pdf

Version: 2024-02-01

89 papers	963 citations	13 h-index	500791 28 g-index
115 all docs	115 docs citations	115 times ranked	770 citing authors

#	Article	IF	Citations
1	Thermoelectric high ZT half-Heusler alloys Ti1â^'xâ^'yZrxHfyNiSn (0Ââ‰ ¤ xÂâ‰ ¤ 1; 0Ââ‰ ¤ yÂâ‰ ¤ 1). Acta Materia 210-222.	alja, 2016,	104, 166'
2	(V,Nb)-doped half Heusler alloys based on {Ti,Zr,Hf}NiSn with high ZT. Acta Materialia, 2017, 131, 336-348.	3.8	119
3	Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti–Ni–Sn and Ti–Ni–Sb ternary systems. Journal of Solid State Chemistry, 2013, 197, 103-112.	1.4	53
4	Peculiarities of structural disorder in Zr- and Hf-containing Heusler and half-Heusler stannides. Intermetallics, 2013, 35, 45-52.	1.8	48
5	On the constitution and thermodynamic modelling of the system Ti–Ni–Sn. RSC Advances, 2015, 5, 92270-92291.	1.7	43
6	The half Heusler system Ti _{1+x} Fe _{1.33â^'x} Sbâ€"TiCoSb with Sb/Sn substitution: phase relations, crystal structures and thermoelectric properties. Dalton Transactions, 2018, 47, 879-897.	1.6	36
7	High-ZT half-Heusler thermoelectrics, Ti0.5Zr0.5NiSn and Ti0.5Zr0.5NiSn0.98Sb0.02: Physical properties at low temperatures. Acta Materialia, 2019, 166, 466-483.	3.8	31
8	Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems. Journal of Solid State Chemistry, 2016, 239, 145-152.	1.4	25
9	Peculiarities of thermoelectric half-Heusler phase formation in Zr–Co–Sb ternary system. Journal of Alloys and Compounds, 2014, 585, 448-454.	2.8	21
10	On the constitution and thermodynamic modelling of the system Zr-Ni-Sn. Journal of Alloys and Compounds, 2018, 742, 1058-1082.	2.8	20
11	Interaction of Vanadium with Iron and Antimony at 870 and 1070 K. European Journal of Inorganic Chemistry, 2012, 2012, 2588-2595.	1.0	16
12	Effect of the accumulation of excess Ni atoms in the crystal structure of the intermetallic semiconductor n-ZrNiSn. Semiconductors, 2013, 47, 892-898.	0.2	14
13	Thermoelectric Half-Heusler compounds TaFeSb and Ta1-xTixFeSb (0 ≤ ≤0.11): Formation and physical properties. Intermetallics, 2019, 111, 106468.	1.8	14
14	Features of an intermetallic n-ZrNiSn semiconductor heavily doped with atoms of rare-earth metals. Semiconductors, 2010, 44, 293-302.	0.2	13
15	Features of a priori heavy doping of the n-TiNiSn intermetallic semiconductor. Semiconductors, 2011, 45, 850-856.	0.2	13
16	Interaction of the components in the Dy–Ag–Sn ternary system at 870K. Journal of Alloys and Compounds, 2007, 439, 128-131.	2.8	12
17	Peculiarities of component interaction in {Gd, Er}â€"Vâ€"Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides. Journal of Alloys and Compounds, 2011, 509, 8862-8869.	2.8	12
18	Determination of structural disorder in Heusler-type phases. Computational Materials Science, 2020, 172, 109307.	1.4	12

#	Article	IF	CITATIONS
19	Crystal, electronic structure and electronic transport properties of the Ti1â^'xVxNiSn (Ñ=0â€"0.10) solid solutions. Journal of Solid State Chemistry, 2010, 183, 3023-3028.	1.4	11
20	Interaction of the components in the Gd–Ni–Sn ternary system at 770K. Journal of Alloys and Compounds, 2010, 505, 70-75.	2.8	11
21	Phase equilibria in the Dy–Cu–Sn ternary system. Journal of Alloys and Compounds, 2005, 395, 113-116.	2.8	10
22	Interaction of the components in Dy–Ni–Sn ternary system and crystal structure of new compounds. Journal of Alloys and Compounds, 2009, 485, 275-279.	2.8	10
23	Structure and Properties of MgB2Bulks, Thin Films, and Wires. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	10
24	Pd5Sn7—A novel binary stannide in Pd–Sn system. Journal of Alloys and Compounds, 2010, 496, L7-L9.	2.8	9
25	Contribution to the investigation of ternary Lu–Ni–Sn system. Journal of Alloys and Compounds, 2011, 509, 4530-4533.	2.8	9
26	The system Ba–Zn–Sn at 500 °C: Phase equilibria, crystal and electronic structure of ternary phases. Journal of Alloys and Compounds, 2014, 585, 287-298.	2.8	9
27	Crystal structure of the ternary R3Ag4Sn4 stannides (R=Y, Gd, Tb, Dy, Ho) with Gd3Cu4Ge4-type structure. Journal of Alloys and Compounds, 2007, 443, 68-70.	2.8	8
28	Features of electrical conductivity in the n-ZrNiSn intermetallic semiconductor heavily doped with the In acceptor impurity. Semiconductors, 2007, 41, 1041-1047.	0.2	8
29	Phase equilibria in Nd–Ni–Sn ternary system. Journal of Alloys and Compounds, 2008, 454, 136-141.	2.8	8
30	Crystal structure of new RAgSn2 ternary compounds (R=Y, Gd, Tb, Dy, Ho, Er). Journal of Alloys and Compounds, 2008, 457, 329-331.	2.8	8
31	LuNi5Sn: A first representative of RNi5Sn stannides with CeCu5Au structure. Journal of Alloys and Compounds, 2010, 493, L12-L14.	2.8	8
32	Interaction of the components in Y–Ni–Sn ternary system at 770ÂK and 670ÂK. Intermetallics, 2012, 29, 116-122.	1.8	8
33	The V–Cu–Sb ternary system at 773K: Crystal, band structure, and physical properties. Journal of Alloys and Compounds, 2014, 589, 200-206.	2.8	8
34	Electric transport properties of RNi3Sn2 compounds (R=Y, Sm, Gd, Tb, Dy) and electronic structure of YNi3Sn2 and GdNi3Sn2. Journal of Alloys and Compounds, 2008, 459, 8-12.	2.8	7
35	Peculiarity of component interaction in Zr–Mn–{Sn, Sb} ternary systems. Journal of Alloys and Compounds, 2014, 611, 401-409.	2.8	7
36	Dy2Ni7Sn3: a new member of the CaCu5family of intermetallics. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, i45-i46.	0.4	6

#	Article	IF	CITATIONS
37	Crystal structure and magnetic properties of Dy4Ni12Sn25 compound. Journal of Alloys and Compounds, 2008, 453, L8-L10.	2.8	6
38	Crystallographic, magnetic and electrical characteristics of some R5â^'xNi12Sn24+x intermetallics. Journal of Alloys and Compounds, 2010, 493, 35-40.	2.8	6
39	Peculiarity of component interaction in Er–Fe–Sn ternary system at 670K and 770K. Journal of Alloys and Compounds, 2010, 507, 67-71.	2.8	6
40	Features of conductivity of the intermetallic semiconductor n-ZrNiSn heavily doped with a Bi donor impurity. Semiconductors, 2012, 46, 887-893.	0.2	6
41	Experimental and theoretical investigation of the Y–Ni–Sb and Tm–Ni–Sb systems. Journal of Alloys and Compounds, 2021, 855, 157334.	2.8	6
42	Mechanism of local amorphization of a heavily doped Ti1 \hat{a} ° x V x CoSb intermetallic semiconductor. Semiconductors, 2008, 42, 753-760.	0.2	5
43	Crystal structure of new ternary RE1.9Cu9.2Sn2.8 compounds (RE=Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er,) Tj ETQq	1 1 0.784 2.8	31 <u>4</u> rgBT /O\
44	Features of the conduction mechanisms of the n-HfNiSn semiconductor heavily doped with the Co acceptor impurity. Semiconductors, 2012, 46, 1106-1113.	0.2	5
45	The systems Sr–Zn–{Si,Ge}: Phase equilibria and crystal structure of ternary phases. Journal of Solid State Chemistry, 2012, 186, 87-93.	1.4	5
46	Features of conductivity mechanisms in heavily doped compensated V1–x Ti x FeSb Semiconductor. Semiconductors, 2016, 50, 860-868.	0.2	5
47	Experimental and DFT study of the V–Co–Sb ternary system. Journal of Alloys and Compounds, 2018, 739, 771-779.	2.8	5
48	Electrical transport properties and electronic structure of RNiSn compounds (R = Y, Gd, Tb, Dy, and) Tj ETQq0 0 C) rgBT /Ov	erlgck 10 Tf 5
49	Magnetic properties of RNi3Sn2 compounds (R=Y, Sm, Gd, Tb, Dy). Journal of Alloys and Compounds, 2008, 454, 5-9.	2.8	4
50	Interaction between components in Hf–Cu–Sb ternary system at 770 K. Journal of Alloys and Compounds, 2008, 461, 147-149.	2.8	4
51	Peculiarity of component interaction in {Y, Dy}–Mn–Sn ternary systems. Journal of Alloys and Compounds, 2011, 509, 7559-7564.	2.8	4
52	Features of conduction mechanisms in n-HfNiSn semiconductor heavily doped with a Rh acceptor impurity. Semiconductors, 2013, 47, 1145-1152.	0.2	4
53	Structural, magnetic and electronic transport studies of RAgSn2 compounds ($R = Y$, Tb, Dy, Ho and Er) with Cu3Au-type. Bulletin of Materials Science, 2013, 36, 1247-1253.	0.8	4
54	Formation and stability of the clathrate-I structure in the systems Sr–(Ni,Cu,Zn)–Ge based on experimental and DFT studies. Intermetallics, 2014, 46, 185-189.	1.8	4

#	Article	IF	CITATIONS
55	Phase relationships in the {Ho, Er}–Ni–Sn ternary systems at 673K and crystal structure of new ternary compounds. Journal of Alloys and Compounds, 2015, 631, 288-297.	2.8	4
56	Features of the band structure and conduction mechanisms of n-HfNiSn semiconductor heavily Lu-doped. Semiconductors, 2015, 49, 290-297.	0.2	4
57	Structure and Properties of MgB2: Effect of Ti-O and TiC Additions. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	4
58	Peculiarity of component interaction in the Gd-Cu-Sn ternary system at 670 and 770 K. Chemistry of Metals and Alloys, 2009, 2, 68-74.	0.2	4
59	Features of the structural, electrokinetic, and magnetic properties of the heavily doped ZrNiSn semiconductor: Dy acceptor impurity. Semiconductors, 2009, 43, 7-13.	0.2	3
60	The Sr-poor part of the Sr–{Pd,Pt}–{Si,Ge} systems: Phase equilibria and crystal structure of ternary phases. Journal of Alloys and Compounds, 2015, 618, 656-665.	2.8	3
61	MgB2 Wires and Bulks With High Superconducting Performance. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.1	3
62	Interaction between the components in the {Zr, Hf}-Ag-Sn ternary systems. Chemistry of Metals and Alloys, 2011, 4, 234-242.	0.2	3
63	Contribution to the investigation of the Y–Cu–Sn ternary system. Chemistry of Metals and Alloys, 2014, 7, 132-138.	0.2	3
64	Structural and thermoelectric properties of Zr1 \hat{a}^{*} x Er x NiSn solid solutions. Inorganic Materials, 2011, 47, 637-644.	0.2	2
65	Features of the band structure and conduction mechanisms in the n-HfNiSn semiconductor heavily doped with Ru. Semiconductors, 2014, 48, 1545-1551.	0.2	2
66	Crystallographic, magnetic and electrical characteristics of R3Ni8Sn4 compounds (RÂ=ÂY, Nd, Sm, Gd,) Tj ETQq0	0.0 _{2.8} gBT	/Oyerlock 10
67	Structure and properties of MgB ₂ bulks: <i>ab-initio</i> simulations compared to experiment. IOP Conference Series: Materials Science and Engineering, 0, 756, 012020.	0.3	2
68	Crystal structure peculiarity and magnetic behavior of R2Cu4â^'xSn5+x (R=Gd, Tb, and Dy) compounds. Journal of Alloys and Compounds, 2011, 509, 5206-5210.	2.8	1
69	Novel Refractory Phase, Ta7Si2(SixB1–x)2. Inorganic Chemistry, 2013, 52, 11295-11301.	1.9	1
70	Structural defect generation and band-structure features in the HfNi1 \hat{a} ° x Co x Sn semiconductor. Semiconductors, 2015, 49, 985-991.	0.2	1
71	Features of the band structure and conduction mechanisms of n-HfNiSn heavily doped with Y. Semiconductors, 2017, 51, 139-145.	0.2	1
72	Preparation and Properties of MgB ₂ Thin Films. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-7.	1.1	1

#	Article	IF	Citations
73	Synthesis, electrical transport, magnetic properties and electronic structure of Ti1-Sc CoSb semiconducting solid solution. Journal of Alloys and Compounds, 2019, 805, 840-846.	2.8	1
74	Manufacturing, Structure, Properties of MgB2-Based Materials. Journal of Superconductivity and Novel Magnetism, 2019, 32, 3115-3120.	0.8	1
75	Correlations Between Superconducting Characteristics and Structure of MgB2-Based Materials, <italic>ab</italic> -Initio Modeling. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-7.	1.1	1
76	Crystal structure and magnetic properties of TmV0.17Ge2 and LuV0.15Ge2 ternary germanides. Journal of Physics and Chemistry of Solids, 2020, 137, 109205.	1.9	1
77	Mechanism of Defect Formation in Zr1 $\hat{a}\in$ " xVxNiSn Thermoelectric Material. Ukrainian Journal of Physics, 2021, 66, 333.	0.1	1
78	Prediction of the Thermoelectric Properties of Half-Heusler Phases from the Density Functional Theory., 2017,, 286-323.		1
79	Isothermal section of the Ho–Cu–Sn ternary system at 670 K. Physics and Chemistry of Solid State, 2018, 19, 139-146.	0.3	1
80	Phase Equilibria in the Dyâ€"Cuâ€"Sn Ternary System ChemInform, 2005, 36, no.	0.1	0
81	Features of Structural Descriptions and Electrophysical Properties of Zr <inf>1-x</inf> Dy <inf>x</inf> NiSn and ZrNi <inf>1-x</inf> Fe <inf>x</inf> Sn Solid Solutions., 2007, , .		0
82	Zr3NiSb7: a new antimony-enriched ZrSb2derivative. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, i47-i47.	0.2	0
83	Investigation of Band Structure of ZrNiSn1-xGax Semiconductor Solid Solution. Physics and Chemistry of Solid State, 2017, 18, 187-193.	0.3	0
84	Interaction of the components in the Gd-Mn-Sn ternary system at 873 and 673 K. Physics and Chemistry of Solid State, 2018, 19, 60-65.	0.3	0
85	Investigation of structural, thermodynamic and energy state characteristics of the ZrNi1-xRhxSn solid solution. Physics and Chemistry of Solid State, 2018, 19, 151-158.	0.3	0
86	Investigation of Electronic Structure of Zr1-xVxNiSn Semiconductive Solid Solution. Physics and Chemistry of Solid State, 2019, 20, 127-132.	0.3	0
87	Er-Cr-Ge Ternary System. Physics and Chemistry of Solid State, 2019, 20, 376-383.	0.3	0
88	Physical properties of {Ti,Zr,Hf}2Ni2Sn compounds. Dalton Transactions, 2021, 51, 361-374.	1.6	0
89	On the constitution and structural characterization of the ternary system Sm-Ni-Sn. Journal of Solid State Chemistry, 2022, , 123213.	1.4	0