Thomas Elbenhardt Jensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/545476/publications.pdf

Version: 2024-02-01

88 papers

5,121 citations

39 h-index 91712 69 g-index

98 all docs 98 docs citations

98 times ranked 6897 citing authors

#	Article	IF	Citations
1	InÂvivo metabolic effects after acute activation of skeletal muscle Gs signaling. Molecular Metabolism, 2022, 55, 101415.	3.0	5
2	Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nature Communications, 2022, 13, 22.	5.8	15
3	Exercise increases phosphorylation of the putative mTORC2 activity readout NDRG1 in human skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2022, 322, E63-E73.	1.8	4
4	Cancer causes dysfunctional insulin signaling and glucose transport in a muscleâ€typeâ€specific manner. FASEB Journal, 2022, 36, e22211.	0.2	7
5	Gene deletion of γâ€actin impairs insulinâ€stimulated skeletal muscle glucose uptake in growing mice but not in mature adult mice. Physiological Reports, 2022, 10, e15183.	0.7	3
6	AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle. Journal of Physiology, 2021, 599, 3081-3100.	1.3	6
7	RNA-bound PGC-1 \hat{l} ± controls gene expression in liquid-like nuclear condensates. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
8	c-Myc overexpression increases ribosome biogenesis and protein synthesis independent of mTORC1 activation in mouse skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2021, 321, E551-E559.	1.8	16
9	Growth Factor-Dependent and -Independent Activation of mTORC2. Trends in Endocrinology and Metabolism, 2020, 31, 13-24.	3.1	31
10	Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes, 2020, 69, 2267-2280.	0.3	13
11	Insulinâ€stimulated glucose uptake partly relies on p21â€activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. Journal of Physiology, 2020, 598, 5351-5377.	1.3	15
12	Rapamycin and mTORC2 inhibition synergistically reduce contractionâ€stimulated muscle protein synthesis. Journal of Physiology, 2020, 598, 5453-5466.	1.3	17
13	Large-scale spontaneous self-organization and maturation of skeletal muscle tissues on ultra-compliant gelatin hydrogel substrates. Scientific Reports, 2020, 10, 13305.	1.6	19
14	Contractionâ€regulated mTORC1 and protein synthesis: Influence of AMPK and glycogen. Journal of Physiology, 2020, 598, 2637-2649.	1.3	15
15	Compartmentalized muscle redox signals controlling exercise metabolism – Current state, future challenges. Redox Biology, 2020, 35, 101473.	3.9	27
16	Cancer causes metabolic perturbations associated with reduced insulin-stimulated glucose uptake in peripheral tissues and impaired muscle microvascular perfusion. Metabolism: Clinical and Experimental, 2020, 105, 154169.	1.5	22
17	The ULK1/2 and AMPK Inhibitor SBI-0206965 Blocks AICAR and Insulin-Stimulated Glucose Transport. International Journal of Molecular Sciences, 2020, 21, 2344.	1.8	15
18	Prior exercise in humans redistributes intramuscular GLUT4 and enhances insulin-stimulated sarcolemmal and endosomal GLUT4 translocation. Molecular Metabolism, 2020, 39, 100998.	3.0	29

#	Article	IF	Citations
19	The p21â€activated kinase 2 (PAK2), but not PAK1, regulates contractionâ€stimulated skeletal muscle glucose transport. Physiological Reports, 2020, 8, e14460.	0.7	9
20	Mechanisms involved in follistatinâ€induced hypertrophy and increased insulin action in skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 1241-1257.	2.9	47
21	The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxidants and Redox Signaling, 2019, 31, 1371-1410.	2.5	40
22	Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nature Communications, 2019, 10, 4623.	5.8	128
23	Electroporated GLUT4â€7 myc â€GFP detects in vivo glucose transporter 4 translocation in skeletal muscle without discernible changes in GFP patterns. Experimental Physiology, 2019, 104, 704-714.	0.9	12
24	The Gut Microbiome on a Periodized Low-Protein Diet Is Associated With Improved Metabolic Health. Frontiers in Microbiology, 2019, 10, 709.	1.5	14
25	Adaptations to high-intensity interval training in skeletal muscle require NADPH oxidase 2. Redox Biology, 2019, 24, 101188.	3.9	45
26	Skeletal Muscle–Specific Activation of Gq Signaling Maintains Glucose Homeostasis. Diabetes, 2019, 68, 1341-1352.	0.3	18
27	Chemical genetic screen identifies Gapex-5/GAPVD1 and STBD1 as novel AMPK substrates. Cellular Signalling, 2019, 57, 45-57.	1.7	18
28	Resistance Exercise-Induced Hypertrophy: A Potential Role for Rapamycin-Insensitive mTOR. Exercise and Sport Sciences Reviews, 2019, 47, 188-194.	1.6	37
29	Chemical denervation using botulinum toxin increases Akt expression and reduces submaximal insulin-stimulated glucose transport in mouse muscle. Cellular Signalling, 2019, 53, 224-233.	1.7	7
30	Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiological Reports, 2018, 6, e13800.	0.7	46
31	Periodized low protein-high carbohydrate diet confers potent, but transient, metabolic improvements. Molecular Metabolism, 2018, 17, 112-121.	3.0	15
32	\hat{l}^2 -Actin shows limited mobility and is required only for supraphysiological insulin-stimulated glucose transport in young adult soleus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E110-E125.	1.8	25
33	Quantitative proteomic characterization of cellular pathways associated with altered insulin sensitivity in skeletal muscle following high-fat diet feeding and exercise training. Scientific Reports, 2018, 8, 10723.	1.6	44
34	Low- and high-protein diets do not alter exÂvivo insulin action in skeletal muscle. Physiological Reports, 2018, 6, e13798.	0.7	7
35	Rac1 muscle knockout exacerbates the detrimental effect of highâ€fat diet on insulinâ€stimulated muscle glucose uptake independently of Akt. Journal of Physiology, 2018, 596, 2283-2299.	1.3	41
36	Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Diabetes, 2017, 66, 1548-1559.	0.3	48

#	Article	lF	Citations
37	Mammalian target of rapamycin complex 2 regulates muscle glucose uptake during exercise in mice. Journal of Physiology, 2017, 595, 4845-4855.	1.3	43
38	Exercise-stimulated glucose uptake $\hat{a}\in$ " regulation and implications for glycaemic control. Nature Reviews Endocrinology, 2017, 13, 133-148.	4.3	312
39	Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation. Journal of Physiology, 2016, 594, 745-761.	1.3	78
40	Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2016, 311, E706-E719.	1.8	53
41	Rac1 in Muscle Is Dispensable for Improved Insulin Action After Exercise in Mice. Endocrinology, 2016, 157, 3009-3015.	1.4	13
42	Rac1 governs exerciseâ€stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. Journal of Physiology, 2016, 594, 4997-5008.	1.3	87
43	Differential regulation by AMP and ADP of AMPK complexes containing different \hat{I}^3 subunit isoforms. Biochemical Journal, 2016, 473, 189-199.	1.7	138
44	Role of AMPK in regulation of LC3 lipidation as a marker of autophagy in skeletal muscle. Cellular Signalling, 2016, 28, 663-674.	1.7	62
45	α-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE, 2016, 11, e0157027.	1.1	8
46	Reply from Lykke Sylow, Lisbeth L. V. Møller, Maximilian Kleinert, Erik A. Richter and Thomas E. Jensen. Journal of Physiology, 2015, 593, 2239-2240.	1.3	0
47	PT-1 selectively activates AMPK- \hat{l}^3 1 complexes in mouse skeletal muscle, but activates all three \hat{l}^3 subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochemical Journal, 2015, 467, 461-472.	1.7	47
48	Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metabolism, 2015, 22, 922-935.	7.2	333
49	Stretchâ€stimulated glucose transport in skeletal muscle is regulated by Rac1. Journal of Physiology, 2015, 593, 645-656.	1.3	58
50	The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes. ELife, 2015, 4, .	2.8	20
51	Rac1 – a novel regulator of contractionâ€stimulated glucose uptake in skeletal muscle. Experimental Physiology, 2014, 99, 1574-1580.	0.9	58
52	Proâ€Inflammatory macrophages increase in skeletal muscle of high fatâ€Fed mice and correlate with metabolic risk markers in humans. Obesity, 2014, 22, 747-757.	1.5	144
53	Is contractionâ€stimulated glucose transport feedforward regulated by Ca ²⁺ ?. Experimental Physiology, 2014, 99, 1562-1568.	0.9	11
54	Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Molecular Metabolism, 2014, 3, 742-753.	3.0	65

#	Article	lF	Citations
55	Acute mTOR inhibition induces insulin resistance and alters substrate utilization inÂvivo. Molecular Metabolism, 2014, 3, 630-641.	3.0	68
56	Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance. Cellular Signalling, 2014, 26, 323-331.	1.7	117
57	Rac1 Is a Novel Regulator of Contraction-Stimulated Glucose Uptake in Skeletal Muscle. Diabetes, 2013, 62, 1139-1151.	0.3	126
58	Rac1 Signaling Is Required for Insulin-Stimulated Glucose Uptake and Is Dysregulated in Insulin-Resistant Murine and Human Skeletal Muscle. Diabetes, 2013, 62, 1865-1875.	0.3	159
59	AMPK and Insulin Action - Responses to Ageing and High Fat Diet. PLoS ONE, 2013, 8, e62338.	1.1	28
60	Muscleâ€specific deletion of mTORC2 (Rictor) blocks insulin stimulated Akt Ser 473 phosphorylation and impairs submaximal but not maximal insulin induced glucose uptake. FASEB Journal, 2013, 27, 1109.10.	0.2	0
61	A novel AMPK activator, PTâ€1, increases gamma1 AMPKassociated activity, but not gamma3 AMPKâ€associated activity or glucose transport. FASEB Journal, 2013, 27, 1169.3.	0.2	O
62	Rac1 is a novel regulator of stretchâ€induced glucose uptake in muscle. FASEB Journal, 2013, 27, 1152.7.	0.2	0
63	Regulation of glucose and glycogen metabolism during and after exercise. Journal of Physiology, 2012, 590, 1069-1076.	1.3	203
64	EMG-Normalised Kinase Activation during Exercise Is Higher in Human Gastrocnemius Compared to Soleus Muscle. PLoS ONE, 2012, 7, e31054.	1.1	22
65	TLR2 Controls Intestinal Carcinogen Detoxication by CYP1A1. PLoS ONE, 2012, 7, e32309.	1.1	33
66	5′-AMP Activated Protein Kinase is Involved in the Regulation of Myocardial β-Oxidative Capacity in Mice. Frontiers in Physiology, 2012, 3, 33.	1.3	12
67	When less is more: a simple Western blotting amendment allowing data acquisition on human single fibers. Journal of Applied Physiology, 2011, 110, 583-584.	1.2	1
68	Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cellular Signalling, 2011, 23, 1546-1554.	1.7	118
69	Regulation of AMPâ€activated protein kinase by LKB1 and CaMKK in adipocytes. Journal of Cellular Biochemistry, 2011, 112, 1364-1375.	1.2	68
70	Lipid-Induced Insulin Resistance Affects Women Less Than Men and Is Not Accompanied by Inflammation or Impaired Proximal Insulin Signaling. Diabetes, 2011, 60, 64-73.	0.3	106
71	Protein kinase Cα activity is important for contraction-induced FXYD1 phosphorylation in skeletal muscle. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R1808-R1814.	0.9	21
72	Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. Journal of Applied Physiology, 2010, 108, 1487-1496.	1.2	296

#	Article	IF	Citations
73	AMP-activated Protein Kinase α2 Subunit Is Required for the Preservation of Hepatic Insulin Sensitivity by n-3 Polyunsaturated Fatty Acids. Diabetes, 2010, 59, 2737-2746.	0.3	74
74	Knockout of the predominant conventional PKC isoform, PKCα, in mouse skeletal muscle does not affect contraction-stimulated glucose uptake. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E340-E348.	1.8	21
75	Genetic impairment of AMPKα2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E924-E934.	1.8	78
76	A Ca ²⁺ –calmodulin–eEF2K–eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. Journal of Physiology, 2009, 587, 1547-1563.	1.3	85
77	Multiple signalling pathways redundantly control glucose transporter <i>GLUT4</i> gene transcription in skeletal muscle. Journal of Physiology, 2009, 587, 4319-4327.	1.3	42
78	AMPâ€activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?. Acta Physiologica, 2009, 196, 155-174.	1.8	67
79	Crucial role for LKB1 to AMPKα2 axis in the regulation of CD36-mediated long-chain fatty acid uptake into cardiomyocytesâ~†. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 212-219.	1.2	83
80	AMPK $\hat{l}\pm 1$ Activation Is Required for Stimulation of Glucose Uptake by Twitch Contraction, but Not by H2O2, in Mouse Skeletal Muscle. PLoS ONE, 2008, 3, e2102.	1.1	77
81	Lack of AMPKα2 enhances pyruvate dehydrogenase activity during exercise. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1242-E1249.	1.8	33
82	Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E286-E292.	1.8	119
83	Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1308-E1317.	1.8	177
84	Role of AMPK in skeletal muscle gene adaptation in relation to exercise. Applied Physiology, Nutrition and Metabolism, 2007, 32, 904-911.	0.9	27
85	AMPK-Mediated AS160 Phosphorylation in Skeletal Muscle Is Dependent on AMPK Catalytic and Regulatory Subunits. Diabetes, 2006, 55, 2051-2058.	0.3	239
86	c-Cbl-deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. Journal of Clinical Investigation, 2005, 115, 476-476.	3.9	3
87	Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO Journal, 2004, 23, 582-593.	3.5	116
88	c-Cbl–deficient mice have reduced adiposity, higher energy expenditure, and improved peripheral insulin action. Journal of Clinical Investigation, 2004, 114, 1326-1333.	3.9	96