Ilaria Dando

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5453979/publications.pdf

Version: 2024-02-01

41 papers

1,693 citations

257450
24
h-index

289244 40 g-index

41 all docs

41 docs citations

times ranked

41

3025 citing authors

#	Article	IF	Citations
1	A new frontier in therapy personalisation based on in vitro studies to preserve fertility potential of men. Andrologia, 2022, 54, e14244.	2.1	2
2	Testicular Torsion: Preliminary Results of In Vitro Cell Stimulation Using Chorionic Gonadotropin. Cells, 2022, 11, 450.	4.1	5
3	Divergent Roles of Mitochondria Dynamics in Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 2155.	3.7	7
4	Quality of Life and Anorectal Malformations: A Single-Center Experience. Pediatric Gastroenterology, Hepatology and Nutrition, 2022, 25, 340.	1.2	1
5	3-Bromo-Isoxazoline Derivatives Inhibit GAPDH Enzyme in PDAC Cells Triggering Autophagy and Apoptotic Cell Death. Cancers, 2022, 14, 3153.	3.7	8
6	Mitochondrial Elongation and OPA1 Play Crucial Roles during the Stemness Acquisition Process in Pancreatic Ductal Adenocarcinoma. Cancers, 2022, 14, 3432.	3.7	8
7	Effects of CD20 antibodies and kinase inhibitors on Bâ€cell receptor signalling and survival of chronic lymphocytic leukaemia cells. British Journal of Haematology, 2021, 192, 333-342.	2.5	5
8	Human Chorionic Gonadotropin-Mediated Induction of Breast Cancer Cell Proliferation and Differentiation. Cells, 2021, 10, 264.	4.1	5
9	Editorial: Novel Cancer Treatments Based on Autophagy Modulation. Frontiers in Pharmacology, 2021, 12, 650559.	3.5	3
10	Integrated lipidomics and proteomics reveal cardiolipin alterations, upregulation of HADHA and long chain fatty acids in pancreatic cancer stem cells. Scientific Reports, 2021, 11, 13297.	3.3	17
11	Adolescent male genitalia dissatisfaction: a surgical perspective. Asian Journal of Andrology, 2021, .	1.6	1
12	Extracellular Matrix Composition Modulates the Responsiveness of Differentiated and Stem Pancreatic Cancer Cells to Lipophilic Derivate of Gemcitabine. International Journal of Molecular Sciences, 2021, 22, 29.	4.1	14
13	Regulation of succinate dehydrogenase and role of succinate in cancer. Seminars in Cell and Developmental Biology, 2020, 98, 4-14.	5.0	111
14	Nanomaterials for Autophagy-Related miRNA-34a Delivery in Cancer Treatment. Frontiers in Pharmacology, 2020, 11, 1141.	3.5	16
15	Progressively De-Differentiated Pancreatic Cancer Cells Shift from Glycolysis to Oxidative Metabolism and Gain a Quiescent Stem State. Cells, 2020, 9, 1572.	4.1	17
16	Oncometabolites in cancer aggressiveness and tumour repopulation. Biological Reviews, 2019, 94, 1530-1546.	10.4	33
17	Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 61-72.	2.4	49
18	Low catalase expression confers redox hypersensitivity and identifies an indolent clinical behavior in CLL. Blood, 2018, 131, 1942-1954.	1.4	15

#	Article	IF	CITATIONS
19	Extracellular matrix composition modulates <scp>PDAC</scp> parenchymal and stem cell plasticity and behavior through the secretome. FEBS Journal, 2018, 285, 2104-2124.	4.7	36
20	Secreted molecules inducing epithelial-to-mesenchymal transition in cancer development. Seminars in Cell and Developmental Biology, 2018, 78, 62-72.	5.0	20
21	Mutant p53 blocks SESN1/AMPK/PGC-1α/UCP2 axis increasing mitochondrial O2ˉ· production in cancer cells. British Journal of Cancer, 2018, 119, 994-1008.	6.4	40
22	UCP2 inhibition induces ROS/Akt/mTOR axis: Role of GAPDH nuclear translocation in genipin/everolimus anticancer synergism. Free Radical Biology and Medicine, 2017, 113, 176-189.	2.9	52
23	Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways. Journal of Proteomics, 2017, 150, 310-322.	2.4	87
24	Mutant p53 proteins counteract autophagic mechanism sensitizing cancer cells to mTOR inhibition. Molecular Oncology, 2016, 10, 1008-1029.	4.6	115
25	Mutant p53 and mTOR/PKM2 regulation in cancer cells. IUBMB Life, 2016, 68, 722-726.	3.4	44
26	The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition. Free Radical Biology and Medicine, 2016, 101, 305-316.	2.9	56
27	Secretome protein signature of human pancreatic cancer stem-like cells. Journal of Proteomics, 2016, 136, 1-12.	2.4	61
28	The metabolic landscape of cancer stem cells. IUBMB Life, 2015, 67, 687-693.	3 . 4	46
29	Antioxidant Mechanisms and ROS-Related MicroRNAs in Cancer Stem Cells. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-13.	4.0	63
30	Mitochondrial uncoupling protein 2 and pancreatic cancer: A new potential target therapy. World Journal of Gastroenterology, 2015, 21, 3232-3238.	3.3	36
31	Pancreatic ductal adenocarcinoma cell lines display a plastic ability to bi-directionally convert into cancer stem cells. International Journal of Oncology, 2015, 46, 1099-1108.	3.3	44
32	UCP2, a mitochondrial protein regulated at multiple levels. Cellular and Molecular Life Sciences, 2014, 71, 1171-1190.	5 . 4	137
33	Regulation of miR-23b expression and its dual role on ROS production and tumour development. Cancer Letters, 2014, 349, 107-113.	7.2	43
34	Hyaluronic acid-coated liposomes for active targeting of gemcitabine. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 85, 373-380.	4.3	123
35	UCP2 inhibition triggers ROS-dependent nuclear translocation of GAPDH and autophagic cell death in pancreatic adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 672-679.	4.1	83
36	Comparative proteomic and phosphoproteomic profiling of pancreatic adenocarcinoma cells treated with <scp>CB</scp> 1 or <scp>CB</scp> 2 agonists. Electrophoresis, 2013, 34, 1359-1368.	2.4	16

#	Article	IF	CITATION
37	Autophagy induced by p53-reactivating molecules protects pancreatic cancer cells from apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 337-346.	4.9	59
38	Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1396-1404.	2.6	65
39	Expression of the Antiapoptotic Protein BAG3 Is a Feature of Pancreatic Adenocarcinoma and Its Overexpression Is Associated With Poorer Survival. American Journal of Pathology, 2012, 181, 1524-1529.	3.8	53
40	Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1856-1863.	4.1	70
41	Gemcitabine response in pancreatic adenocarcinoma cells is synergistically enhanced by dithiocarbamate derivatives. Free Radical Biology and Medicine, 2011, 50, 926-933.	2.9	27