Thallada Bhaskar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5453937/publications.pdf

Version: 2024-02-01

229 papers 10,675 citations

53 h-index 92 g-index

229 all docs $\begin{array}{c} 229 \\ \text{docs citations} \end{array}$

times ranked

229

8100 citing authors

#	Article	IF	Citations
1	Catalytic hydrothermal liquefaction of alkali lignin at low temperature: Effect of acid and base catalysts on phenolic monomers production. Biomass Conversion and Biorefinery, 2024, 14, 4071-4080.	2.9	2
2	Py-GC/MS and pyrolysis studies of eucalyptus, mentha, and palmarosa biomass. Biomass Conversion and Biorefinery, 2024, 14, 5319-5330.	2.9	4
3	Co-hydrothermal Liquefaction of Lignin and Macroalgae: Effect of Process Parameters on Product Distribution. Bioenergy Research, 2023, 16, 33-44.	2.2	12
4	Hydrothermal Treatment of Pretreated Castor Residue for the Production of Bio-oil. Bioenergy Research, 2023, 16, 517-527.	2.2	4
5	Effects of temperature and solvent on hydrothermal liquefaction of the corncob for production of phenolic monomers. Biomass Conversion and Biorefinery, 2022, 12, 91-101.	2.9	18
6	Copper and manganese bimetallic catalysts for oxidation of prot lignin: effects of metal oxide on product yield. Biomass Conversion and Biorefinery, 2022, 12, 115-128.	2.9	15
7	Low-temperature alkali lignin depolymerization to functional chemicals. Biomass Conversion and Biorefinery, 2022, 12, 209-219.	2.9	5
8	Screening of sugarcane bagasse-derived biochar for phenol adsorption: optimization study using response surface methodology. International Journal of Environmental Science and Technology, 2022, 19, 8797-8810.	1.8	13
9	Advances in liquefaction for the production of hydrocarbon biofuels. , 2022, , 127-176.		5
10	Biomass derived functional carbon materials for supercapacitor applications. Chemosphere, 2022, 286, 131961.	4.2	148
11	Inspecting the bioenergy potential of noxious Vachellia nilotica weed via pyrolysis: Thermo-kinetic study, neural network modeling and response surface optimization. Renewable Energy, 2022, 185, 386-402.	4.3	10
12	Biomass characterization., 2022, , 151-175.		1
13	Ionic liquids for separation of lignin and transformation into value-added chemicals. Current Opinion in Green and Sustainable Chemistry, 2022, 34, 100582.	3.2	10
14	Flash hydropyrolysis of cotton stalks: Role of temperature, metal loading, pressure for enhancement of aromatics. Bioresource Technology, 2022, 351, 127047.	4.8	5
15	Process development for crystalline xylitol production from corncob biomass by Pichia caribbica. Food and Bioproducts Processing, 2022, 133, 45-56.	1.8	15
16	Oxidative catalytic valorization of industrial lignin into phenolics: Effect of reaction parameters and metal oxides. Bioresource Technology, 2022, 352, 127032.	4.8	11
17	Co-hydrothermal liquefaction of phumdi and paragrass an aquatic biomass: Characterization of bio-oil, aqueous fraction and solid residue. Journal of the Energy Institute, 2022, 102, 247-255.	2.7	15
18	Preparation of cyclohexanol from lignin-based phenolic concoction using controlled hydrogen delivery tool over in-situ Ru catalyst. Biomass and Bioenergy, 2022, 161, 106448.	2.9	10

#	Article	IF	CITATIONS
19	Upgradation of sugarcane bagasse lignin: Fractionation to cyclic alcohols production. Catalysis Today, 2022, , .	2.2	5
20	Insights into the decomposition kinetics of groundnut shell: An advanced isoconversional approach. Renewable Energy, 2022, 196, 1-14.	4.3	5
21	Energy and life cycle impact assessment for xylitol production from corncob. Journal of Cleaner Production, 2021, 278, 123217.	4.6	22
22	A detailed assessment of pyrolysis kinetics of invasive lignocellulosic biomasses (Prosopis juliflora) Tj ETQq0 0	0 rgBT /Ove 4.8	rlock 10 Tf 50
23	Hydrodeoxygenation of lignin derived phenolics over a hydrous ruthenium oxide based catalyst(s): role of surface water molecules and acidity of the support. Sustainable Energy and Fuels, 2021, 5, 3802-3817.	2.5	20
24	Catalytic approaches for the selective preparation of cyclohexanone from lignin-based methoxyphenols/phenols., 2021,, 301-327.		0
25	Preparation of cyclohexanol intermediates from lignin through catalytic intervention., 2021,, 57-82.		0
26	Potential of petrochemicals from lignin. , 2021, , 147-171.		4
27	Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides. Energy, 2021, 217, 119330.	4.5	34
28	Dissolution of brominated epoxy resin for environment friendly recovery of copper as cupric oxide nanoparticles from waste printed circuit boards using ammonium chloride roasting. Journal of Cleaner Production, 2021, 291, 125928.	4.6	31
29	Py-GC/MS study of prot lignin with cobalt impregnated titania, ceria and zirconia catalysts. Renewable Energy, 2021, 172, 121-129.	4.3	21
30	Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environmental Science and Pollution Research, 2021, 28, 49362-49382.	2.7	18
31	Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals. Energy & Ener	2.5	39
32	Predicting the decomposition mechanism of Loktak biomass using Py-GC/MS. Environmental Technology and Innovation, 2021, 23, 101735.	3.0	13
33	Efficient extraction of metals from thermally treated waste printed circuit boards using solid state chlorination: Statistical modeling and optimization. Journal of Cleaner Production, 2021, 313, 127950.	4.6	8
34	Effect of lignocellulosic biomass inhibitors on oleaginous yeast cultivation in multistage fermentation system. Bioresource Technology Reports, 2021, 15, 100791.	1.5	5
35	Valorization of the red macroalga Gracilaria corticata by hydrothermal liquefaction: Product yield improvement by optimization of process parameters. Bioresource Technology Reports, 2021, 15, 100796.	1.5	9
36	Effects of solid base catalysts on depolymerization of alkali lignin for the production of phenolic monomer compounds. Renewable Energy, 2021, 175, 270-280.	4.3	33

#	Article	IF	CITATIONS
37	Characterization of the de-oiled yeast biomass for plausible value mapping in a biorefinery perspective. Bioresource Technology, 2021, 337, 125422.	4.8	5
38	Oxidative valorisation of lignin into valuable phenolics: Effect of acidic and basic catalysts and reaction parameters. Bioresource Technology, 2021, 338, 125513.	4.8	17
39	Catalytic hydrothermal liquefaction of alkali lignin over activated bio-char supported bimetallic catalyst. Bioresource Technology, 2021, 337, 125439.	4.8	79
40	Pyrolysis of de-oiled yeast biomass of Rhodotorula mucilaginosa IIPL32: Kinetics and thermodynamic parameters using thermogravimetric analysis. Bioresource Technology, 2021, 340, 125534.	4.8	12
41	Preparation and characterization of lignin-derived hard templated carbon(s): Statistical optimization and methyl orange adsorption isotherm studies. Bioresource Technology, 2021, 342, 125924.	4.8	39
42	Hydrothermal oxidative valorisation of lignin into functional chemicals: A review. Bioresource Technology, 2021, 342, 126016.	4.8	30
43	Co-Hydrothermal Liquefaction of algal and lignocellulosic biomass: Status and perspectives. Bioresource Technology, 2021, 342, 125948.	4.8	30
44	Utilization of lignin: A sustainable and eco-friendly approach. Journal of the Energy Institute, 2020, 93, 235-271.	2.7	148
45	Slow pyrolysis of Defatted Seeds Cakes of African star apple and silk cotton for production of bio-oil. Renewable Energy, 2020, 146, 1710-1716.	4.3	19
46	Yeast lipid-based biofuels and oleochemicals from lignocellulosic biomass: life cycle impact assessment. Sustainable Energy and Fuels, 2020, 4, 387-398.	2.5	22
47	Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Bioresource Technology, 2020, 299, 122589.	4.8	46
48	Advances in design strategies for preparation of biochar based catalytic system for production of high value chemicals. Bioresource Technology, 2020, 299, 122564.	4.8	43
49	Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses. Bioresource Technology, 2020, 299, 122557.	4.8	104
50	Hydrodeoxygenation of m-Cresol over Ru based catalysts: Influence of catalyst support on m-Cresol conversion and methylcyclohexane selectivity. Renewable Energy, 2020, 151, 687-697.	4.3	42
51	Biocarbon Supported Nanoscale Ruthenium Oxide-Based Catalyst for Clean Hydrogenation of Arenes and Heteroarenes. ACS Sustainable Chemistry and Engineering, 2020, 8, 15740-15754.	3.2	44
52	Pyrolysis, combustion and gasification of biomass (PCGB-2020). Bioresource Technology, 2020, 313, 123803.	4.8	5
53	Advances in algal biochar: Production, characterization and applications. Bioresource Technology, 2020, 317, 123982.	4.8	15
54	Connecting the dots: Advances in modern metabolomics and its application in yeast system. Biotechnology Advances, 2020, 44, 107616.	6.0	12

#	Article	IF	CITATIONS
55	Keratinase Biosynthesis from Waste Poultry Feathers for Proteinaceous Stain Removal. ACS Sustainable Chemistry and Engineering, 2020, 8, 17651-17663.	3.2	16
56	Comparison of hydrothermal carbonization and torrefaction of azolla biomass: Analysis of the solid products. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104844.	2.6	46
57	A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresource Technology, 2020, 312, 123596.	4.8	171
58	Critical Review on Biocharâ€Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Advanced Sustainable Systems, 2020, 4, 1900149.	2.7	93
59	Exploring the flexibility of cellulase cocktail obtained from mutant UV-8 of Talaromyces verruculosus IIPC 324 in depolymerising multiple agro-industrial lignocellulosic feedstocks. International Journal of Biological Macromolecules, 2020, 154, 538-544.	3.6	9
60	Catalytic hydrothermal liquefaction of castor residue to bio-oil: Effect of alkali catalysts and optimization study. Industrial Crops and Products, 2020, 149, 112359.	2.5	33
61	Innovations in environmental bioprocesses for sustainable development. Environmental Science and Pollution Research, 2020, 27, 27169-27171.	2.7	1
62	Effect of hydrogen peroxide on the depolymerization of prot lignin. Industrial Crops and Products, 2020, 150, 112355.	2.5	27
63	Potential of castor plant (Ricinus communis) for production of biofuels, chemicals, and value-added products., 2020,, 269-310.		20
64	Solid base catalytic hydrothermal liquefaction of macroalgae: Effects of process parameter on product yield and characterization. Bioresource Technology, 2020, 307, 123232.	4.8	91
65	Scale-up strategy for yeast single cell oil production for Rhodotorula mucilagenosa IIPL32 from corn cob derived pentosan. Bioresource Technology, 2020, 309, 123329.	4.8	32
66	Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: Assessment of nutritional indices. Bioresource Technology, 2020, 309, 123330.	4.8	33
67	Eco-friendly recovery of metals from waste mobile printed circuit boards using low temperature roasting. Journal of Hazardous Materials, 2020, 395, 122642.	6.5	54
68	Hydochar and biochar: Production, physicochemical properties and techno-economic analysis. Bioresource Technology, 2020, 310, 123442.	4.8	130
69	Molybdenum-catalyzed oxidative depolymerization of alkali lignin: Selective production of Vanillin. Applied Catalysis A: General, 2020, 598, 117567.	2.2	43
70	High surface area biochar from Sargassum tenerrimum as potential catalyst support for selective phenol hydrogenation. Environmental Research, 2020, 186, 109533.	3.7	49
71	Integrated biorefinery concept for Indian paper and pulp industry. , 2020, , 631-658.		3
72	A biorefinery approach for sewage sludge. , 2020, , 393-421.		3

#	Article	IF	Citations
73	Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry. Bioresource Technology, 2019, 291, 121822.	4.8	40
74	Combustion of Lignocellulosic Biomass. , 2019, , 267-284.		3
75	Pyrolysis of Biomass. , 2019, , 217-244.		26
76	Advanced Hydrothermal Liquefaction of Biomass for Bio-Oil Production., 2019,, 245-266.		6
77	Gasification of Lignocellulosic Biomass. , 2019, , 285-300.		4
78	Optimization of process parameters for hydrothermal conversion of castor residue. Science of the Total Environment, 2019, 686, 641-647.	3.9	10
79	Value-addition of water hyacinth and para grass through pyrolysis and hydrothermal liquefaction. Carbon Resources Conversion, 2019, 2, 233-241.	3.2	23
80	Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 2019, 115, 109400.	8.2	66
81	Thermochemical Route for Biohydrogen Production. , 2019, , 187-218.		9
82	Evaluation of a wet processing strategy for mixed phumdi biomass conversion to bioethanol. Bioresource Technology, 2019, 289, 121633.	4.8	9
83	Reaction parameters effect on hydrothermal liquefaction of castor (Ricinus Communis) residue for energy and valuable hydrocarbons recovery. Renewable Energy, 2019, 141, 1026-1041.	4.3	37
84	Production of High-Density Fuel Precursor from Biomass-Derived Aromatic Oxygenates: Effect of N ₂ Pressure on the Alkylation. Industrial & Engineering Chemistry Research, 2019, 58, 16071-16076.	1.8	4
85	Co-pyrolysis of phumdi and para grass biomass from Loktak Lake. Bioresource Technology, 2019, 285, 121308.	4.8	14
86	Hydrothermal upgradation of algae into value-added hydrocarbons. , 2019, , 435-459.		1
87	Production of phenolic compounds using waste coir pith: Estimation of kinetic and thermodynamic parameters. Bioresource Technology, 2019, 274, 173-179.	4.8	24
88	Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 2018, 90, 292-315.	8.2	208
89	Effect of composting on the thermal decomposition behavior and kinetic parameters of pig manure-derived solid waste. Bioresource Technology, 2018, 252, 59-65.	4.8	52
90	Valorization of Sargassum tenerrimum: Value addition using hydrothermal liquefaction. Fuel, 2018, 222, 394-401.	3.4	41

#	Article	IF	Citations
91	Pyrolysis behavior of rice straw under carbon dioxide for production of bio-oil. Renewable Energy, 2018, 129, 686-694.	4.3	82
92	A comprehensive review on the pyrolysis of lignocellulosic biomass. Renewable Energy, 2018, 129, 695-716.	4.3	974
93	Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresource Technology, 2018, 250, 422-428.	4.8	304
94	Effect of pressure and H2 on the pyrolysis characteristics of lignite: Thermal behavior and coal char structural properties. Journal of Analytical and Applied Pyrolysis, 2018, 135, 1-9.	2.6	29
95	Co-pyrolysis of biomass and plastic wastes: investigation of apparent kinetic parameters and stability of pyrolysis oils. IOP Conference Series: Earth and Environmental Science, 2018, 154, 012022.	0.2	9
96	Microwave-Driven Biorefinery for Utilization of Food and Agricultural Waste Biomass. , 2018 , , $393-408$.		9
97	Kinetic Analysis of Biomass Pyrolysis. , 2018, , 39-83.		22
98	Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresource Technology, 2017, 237, 57-63.	4.8	433
99	Pyrolysis of azolla, sargassum tenerrimum and water hyacinth for production of bio-oil. Bioresource Technology, 2017, 242, 139-145.	4.8	84
100	Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae. Bioresource Technology, 2017, 242, 344-350.	4.8	114
101	Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology, 2017, 245, 1122-1129.	4.8	218
102	Hydrothermal Liquefaction of Lignocellulosic Biomass Components: Effect of Alkaline Catalyst. Green Energy and Technology, 2017, , 69-84.	0.4	2
103	Non-isothermal kinetic study of de-oiled seeds cake of African star apple (Chrosophyllum albidum) using thermogravimetry. Heliyon, 2016, 2, e00172.	1.4	22
104	Thermoanalytical Characterization and Catalytic Conversion of Deoiled Micro Algae and Jatropha Seed Cake. Energy & Seels, 2016, 30, 7982-7993.	2.5	5
105	Heat content of the Arabian Sea Mini Warm Pool is increasing. Atmospheric Science Letters, 2016, 17, 39-42.	0.8	15
106	Waste Biorefinery – Advocating Circular Economy. Bioresource Technology, 2016, 215, 1.	4.8	10
107	Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 2016, 318, 347-354.	6.5	123
108	Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnology for Biofuels, 2016, 9, 221.	6.2	80

#	Article	IF	Citations
109	New Horizons in Biotechnology – NHBT 2015. Bioresource Technology, 2016, 213, 1.	4.8	1
110	Exploitation of Pongamia glabradeoiled cake for alternate energy: Physico-chemical characterization and thermogravimetric studies. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 29-36.	1.2	4
111	Pyrolysis of Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the production of bio-oil. Renewable Energy, 2016, 98, 238-244.	4.3	44
112	Strategies for selection of thermo-chemical processes for the valorisation of biomass. Renewable Energy, 2016, 98, 226-237.	4.3	79
113	Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals. Bioresource Technology, 2016, 213, 319-326.	4.8	91
114	Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology, 2016, 213, 204-207.	4.8	151
115	Role of Reaction Temperature on Pyrolysis of Cotton Residue. Waste and Biomass Valorization, 2016, 7, 71-78.	1.8	32
116	Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresource Technology, 2016, 199, 398-407.	4.8	120
117	Hydrothermal liquefaction of rice straw: Effect of reaction environment. Journal of Supercritical Fluids, 2015, 104, 70-75.	1.6	60
118	Conversion of rice straw to monomeric phenols under supercritical methanol and ethanol. Bioresource Technology, 2015, 188, 280-286.	4.8	46
119	Thermo-chemical Conversion of Biomass. Bioresource Technology, 2015, 178, 1.	4.8	5
120	Hydrothermal liquefaction of macro algae: Effect of feedstock composition. Fuel, 2015, 146, 69-74.	3.4	67
121	Steam gasification of printed circuit board from e-waste: Effect of coexisting nickel to hydrogen production. Fuel Processing Technology, 2015, 133, 69-74.	3.7	32
122	A novel process for the removal of bromine from styrene polymers containing brominated flame retardant. Polymer Degradation and Stability, 2015, 112, 86-93.	2.7	28
123	Hydrothermal Liquefaction of Biomass. , 2015, , 269-291.		23
124	Catalysts for Thermochemical Conversion of Biomass. , 2015, , 109-132.		10
125	Feedstock Suitability for Thermochemical Processes. , 2015, , 31-74.		14
126	Thermochemical Biorefinery. , 2015, , 157-174.		6

#	Article	IF	Citations
127	Thermochemical Valorization of Lignin. , 2015, , 455-478.		10
128	Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments. Bioresource Technology, 2015, 188, 273-279.	4.8	63
129	Effect of catalyst contact on the pyrolysis of wheat straw and wheat husk. Fuel, 2015, 160, 64-70.	3.4	32
130	Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 2015, 182, 282-288.	4.8	135
131	Effect of solvent on the hydrothermal liquefaction of macro algae Ulva fasciata. Chemical Engineering Research and Design, 2015, 93, 154-160.	2.7	86
132	Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: Characterization of bio-oil and its sub-fractions. Bioresource Technology, 2015, 178, 83-89.	4.8	105
133	Hydrothermal liquefaction of agricultural and forest biomass residue: comparative study. Journal of Material Cycles and Waste Management, 2015, 17, 442-452.	1.6	49
134	Preparation of feedstocks for gasification for synthetic liquid fuel production., 2015,, 57-71.		1
135	Catalytic hydrothermal liquefaction of water hyacinth. Bioresource Technology, 2015, 178, 157-165.	4.8	110
136	Hydrothermal Upgradation of Algae into Value-added Hydrocarbons. , 2014, , 235-260.		8
137	Hydrothermal conversion of lignin to substituted phenols and aromatic ethers. Bioresource Technology, 2014, 165, 319-322.	4.8	132
138	Non isothermal model free kinetics for pyrolysis of rice straw. Bioresource Technology, 2014, 169, 614-621.	4.8	158
139	Effect of pressure and temperature on the hydropyrolysis of cotton residue. Journal of Material Cycles and Waste Management, 2014, 16, 442-448.	1.6	7
140	Pyrolysis of jute dust: effect of reaction parameters and analysis of products. Journal of Material Cycles and Waste Management, 2014, 16, 449-459.	1.6	68
141	Effect of method of preparation on hydrodesulphurization activity of Co- or Ni-promoted MoS2/SBA-15 catalysts. Journal of Chemical Sciences, 2014, 126, 437-444.	0.7	1
142	Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Bioresource Technology, 2014, 165, 336-342.	4.8	78
143	Hydropyrolysis of lignocellulosic biomass: state of the art review. Biomass Conversion and Biorefinery, 2014, 4, 67-75.	2.9	31
144	Hydropyrolysis of Jatropha Seed de-Oiled Cake: Estimation of Kinetic Parameters. Waste and Biomass Valorization, 2013, 4, 503-507.	1.8	3

#	Article	IF	Citations
145	Catalytic hydrothermal upgradation of wheat husk. Bioresource Technology, 2013, 149, 446-451.	4.8	38
146	Effect of pressure on the hydropyrolysis of Jatropha seed deoiled cake. Journal of Material Cycles and Waste Management, 2013, 15, 328-334.	1.6	6
147	Thermochemical Route for Biohydrogen Production. , 2013, , 285-316.		11
148	Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresource Technology, 2013, 139, 66-72.	4.8	89
149	Impact of brominated flame retardants on the thermal degradation of high-impact polystyrene. Polymer Degradation and Stability, 2013, 98, 306-315.	2.7	24
150	Hydrodesulfurization Studies on SBA-16 Supported Molybdenum Hydrotreating Catalysts. ACS Symposium Series, 2013, , 161-192.	0.5	3
151	Renewable hydrocarbons through biomass hydropyrolysis process: challenges and opportunities. Journal of Material Cycles and Waste Management, 2013, 15, 9-15.	1.6	21
152	Catalytic functionalities of FSM-16 ordered mesoporus silica supported molybdenum hydroprocessing catalysts. Catalysis Today, 2012, 198, 263-269.	2.2	10
153	Effect of heating rate on the pyrolysis of high-impact polystyrene containing brominated flame retardants: fate of brominated flame retardants. Journal of Material Cycles and Waste Management, 2012, 14, 259-265.	1.6	14
154	Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst. Bioresource Technology, 2012, 120, 318-321.	4.8	90
155	Ultrasound cavitation technique for up-gradation of vacuum residue. Fuel Processing Technology, 2012, 93, 73-77.	3.7	32
156	Thermal decomposition of polymer mixtures of PVC, PET and ABS containing brominated flame retardant: Formation of chlorinated and brominated organic compounds. Journal of Analytical and Applied Pyrolysis, 2012, 96, 69-77.	2.6	68
157	Thermochemical Conversion of Biomass to Biofuels. , 2011, , 51-77.		47
158	TG–MS investigation of brominated products from the degradation of brominated flame retardants in high-impact polystyrene. Chemosphere, 2011, 85, 368-373.	4.2	46
159	Effect of polyethylene terephthalate (PET) on the pyrolysis of brominated flame retardant-containing high-impact polystyrene (HIPS-Br). Journal of Material Cycles and Waste Management, 2010, 12, 332-340.	1.6	12
160	Kinetic studies of the decomposition of flame retardant containing high-impact polystyrene. Polymer Degradation and Stability, 2010, 95, 1129-1137.	2.7	54
161	Hydrothermal upgrading of wood biomass: Influence of the addition of K2CO3 and cellulose/lignin ratio. Fuel, 2008, 87, 2236-2242.	3.4	89
162	Effect of decabromodiphenyl ether and antimony trioxide on controlled pyrolysis of high-impact polystyrene mixed with polyolefins. Chemosphere, 2008, 72, 1073-1079.	4.2	16

#	Article	IF	CITATIONS
163	Novel highly active FSM-16 supported molybdenum catalyst for hydrotreatment. Chemical Communications, 2008, , 5310.	2.2	15
164	Enhanced debromination of brominated flame retardant plastics under microwave irradiation. Green Chemistry, 2008, 10, 739.	4.6	11
165	Decomposition of Methylene Blue in Water by a Composite of Titanium Phosphate-porous Carbon. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2008, 55, 51-54.	0.1	1
166	Improvement of Specific Capacitance with Addition of Surfactants to an Aqueous Electrolyte. Electrochemistry, 2007, 75, 598-600.	0.6	2
167	PYROLYSIS OF WASTE ELECTRICAL AND ELECTRONIC EQUIPMENT: EFFECT OF ANTINOMY TRIOXIDE ON THE PYROLYSIS OF STYRENIC POLYMERS. Environmental Technology (United Kingdom), 2007, 28, 1045-1054.	1.2	10
168	Controlled pyrolysis of polyethylene/polypropylene/polystyrene mixed plastics with high impact polystyrene containing flame retardant: Effect of decabromo diphenylethane (DDE). Polymer Degradation and Stability, 2007, 92, 211-221.	2.7	47
169	The co-pyrolysis of flame retarded high impact polystyrene and polyolefins. Journal of Analytical and Applied Pyrolysis, 2007, 80, 406-415.	2.6	20
170	Individual and simultaneous degradation of brominated high impact polystyrene and brominated acrylonitrile-butadiene-styrene and removal of heteroelements (Br, N, and O) from degradation oil by multiphase catalytic systems. Journal of Material Cycles and Waste Management, 2007, 9, 56-61.	1.6	21
171	Co-processing of DVDs and CDs with vegetable cooking oil by thermal degradation. Journal of Material Cycles and Waste Management, 2007, 9, 62-68.	1.6	11
172	Catalytic degradation of polyolefins over hexagonal mesoporous silica: Effect of aluminum addition. Journal of Analytical and Applied Pyrolysis, 2007, 80, 360-368.	2.6	46
173	Prevention of chlorinated hydrocarbons formation during pyrolysis of PVC or PVDC mixed plastics. Green Chemistry, 2006, 8, 697.	4.6	47
174	Alkaline hydrothermal treatment of brominated high impact polystyrene (HIPS-Br) for bromine and bromine-free plastic recovery. Chemosphere, 2006, 64, 1021-1025.	4.2	39
175	Preparation of Ruthenium-Porous Carbon Composite from a Chelate Resin and Its Application to Capacitor Electrode. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2006, 53, 971-977.	0.1	0
176	Hydrothermal upgrading of biomass: Effect of KCO concentration and biomass/water ratio on products distribution. Bioresource Technology, 2006, 97, 90-98.	4.8	175
177	Characterization and reactivity of Al2O3–ZrO2 supported vanadium oxide catalysts. Journal of Molecular Catalysis A, 2006, 243, 149-157.	4.8	39
178	Pyrolysis study of a PVDC and HIPS-Br containing mixed waste plastic stream: Effect of the poly(ethylene terephthalate). Journal of Analytical and Applied Pyrolysis, 2006, 77, 68-74.	2.6	22
179	Liquefaction of PVC Mixed Plastics. , 2006, , 493-529.		4
180	Removal of nitrogen, bromine, and chlorine from PP/PE/PS/PVC/ABS–Br pyrolysis liquid products using Fe- and Ca-based catalysts. Polymer Degradation and Stability, 2005, 87, 225-230.	2.7	85

#	Article	IF	CITATIONS
181	Analysis of chlorine distribution in the pyrolysis products of poly(vinylidene chloride) mixed with polyethylene, polypropylene or polystyrene. Polymer Degradation and Stability, 2005, 89, 38-42.	2.7	35
182	Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment. Fuel, 2005, 84, 875-884.	3.4	286
183	Low-temperature catalytic hydrothermal treatment of wood biomass: analysis of liquid products. Chemical Engineering Journal, 2005, 108, 127-137.	6.6	223
184	Catalytic hydrothermal treatment of pine wood biomass: effect of RbOH and CsOH on product distribution. Journal of Chemical Technology and Biotechnology, 2005, 80, 1097-1102.	1.6	47
185	Activated Carbon Monoliths from Phenol Resin and Carbonized Cotton Fiber for Methane Storage. Energy &	2.5	25
186	Pyrolysis of Polypropylene/Polyethylene/Polystyrene and Polyvinylchloride Mixed Plastics using CaCO ₃ . Progress in Rubber, Plastics and Recycling Technology, 2004, 20, 163-170.	0.8	6
187	Preparation, characterization and reactivity of calcium–carbon, iron–calcium–carbon composites for dechlorination. Applied Catalysis A: General, 2004, 261, 135-141.	2.2	9
188	The effect of PVC and/or PET on thermal degradation of polymer mixtures containing brominated ABS. Fuel, 2004, 83, 2021-2028.	3.4	41
189	Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass. Fuel, 2004, 83, 2293-2299.	3.4	83
190	Recycling of waste lubricant oil into chemical feedstock or fuel oil over supported iron oxide catalysts. Fuel, 2004, 83, 9-15.	3.4	73
191	Effect of poly(ethylene terephthalate) on the pyrolysis of brominated flame retardant containing high impact polystyrene and catalytic debromination of the liquid products. Journal of Analytical and Applied Pyrolysis, 2004, 71, 765-777.	2.6	26
192	Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br, Cl) of the liquid products. Journal of Analytical and Applied Pyrolysis, 2004, 72, 27-33.	2.6	101
193	Thermal degradation of PE and PS mixed with ABS-Br and debromination of pyrolysis oil by Fe- and Ca-based catalysts. Polymer Degradation and Stability, 2004, 84, 459-467.	2.7	55
194	Preparation of novel TiP2O7 carbon composite using ion-exchanged resin (C467) and evaluation for photocatalytic decomposition of 2-propanol. Applied Catalysis A: General, 2004, 260, 163-168.	2.2	10
195	Preparation and characterization of nanocrystalline CeO2–ZrO2 catalysts by dry method: effect of oxidizing conditions. Applied Catalysis A: General, 2004, 275, 173-181.	2.2	10
196	Low-Temperature Hydrothermal Treatment of Biomass:  Effect of Reaction Parameters on Products and Boiling Point Distributions. Energy & Samp; Fuels, 2004, 18, 234-241.	2.5	141
197	The individual and cumulative effect of brominated flame retardant and polyvinylchloride (PVC) on thermal degradation of acrylonitrile–butadiene–styrene (ABS) copolymer. Chemosphere, 2004, 56, 433-440.	4.2	71
198	Effect of Resin Precursor and Porous Structure on the Performance of Electric Double Layer Capacitor (EDLC) Electrode. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2004, 51, 618-621.	0.1	0

#	Article	IF	CITATIONS
199	Preparation of Porous Carbon Membrane Plate (PCMP) from Phenol Resins and Rice Husks with Carbonization under Pressure. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2004, 51, 766-772.	0.1	O
200	Extraction Properties of a Y-Pattern Microchannel Reactor with a Settler. Kagaku Kogaku Ronbunshu, 2004, 30, 159-163.	0.1	4
201	Development of a catalytic dehalogenation (Cl, Br) process for municipal waste plastic-derived oil. Journal of Material Cycles and Waste Management, 2003, 5, 113-124.	1.6	37
202	Effect of Sb2O3 in brominated heating impact polystyrene (HIPS-Br) on thermal degradation and debromination by iron oxide carbon composite catalyst (Fe-C). Applied Catalysis B: Environmental, 2003, 43, 229-241.	10.8	53
203	Studies on thermal degradation of acrylonitrile–butadiene–styrene copolymer (ABS-Br) containing brominated flame retardant. Journal of Analytical and Applied Pyrolysis, 2003, 70, 369-381.	2.6	49
204	Comparison of thermal degradation products from real municipal waste plastic and model mixed plastics. Journal of Analytical and Applied Pyrolysis, 2003, 70, 579-587.	2.6	68
205	Thermal decomposition of flame-retarded high-impact polystyrene. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 83-99.	2.6	140
206	Debromination of flame retardant high impact polystyrene (HIPS-Br) by hydrothermal treatment and recovery of bromine free plastics. Green Chemistry, 2003, 5, 260-263.	4.6	30
207	Liquefaction of Mixed Plastics Containing PVC and Dechlorination by Calcium-Based Sorbent. Energy & Liquefaction, 2003, 17, 75-80.	2.5	41
208	Structure and Reactivity of Molybdenum Oxide Catalysts Supported on La2O3-Stabilized Tetragonal ZrO2. Langmuir, 2003, 19, 10795-10802.	1.6	11
209	Utilization of waste biomass and replacement of stoichiometric reagents for the synthesis of nanocrystalline CeO2, ZrO2and CeO2–ZrO2. Green Chemistry, 2003, 5, 480-483.	4.6	6
210	Optimal Preparation Yield of Porous Carbon for Capacitor Electrode. Tanso, 2003, 2003, 221-224.	0.1	1
211	Laboratory Evaluation of Calcium-, Iron-, and Potassium-Based Carbon Composite Sorbents for Capture of Hydrogen Chloride Gas. Energy & Samp; Fuels, 2002, 16, 1533-1539.	2.5	35
212	Thermal degradation of ABS-Br mixed with PP and catalytic debromination by iron oxide carbon composite catalyst (Fe–C). Green Chemistry, 2002, 4, 603-606.	4.6	26
213	Novel calcium based sorbent (Ca-C) for the dehalogenation (Br, Cl) process during halogenated mixed plastic (PP/PE/PS/PVC and HIPS-Br) pyrolysis. Green Chemistry, 2002, 4, 372-375.	4.6	80
214	Dispersion and reactivity of Mo/Nb2O5 catalysts in the ammoxidation of toluene to benzonitrile. Green Chemistry, 2002, 4, 206-209.	4.6	11
215	Characterization and catalytic properties of MoO3–V2O5/Nb2O5 catalysts. Catalysis Communications, 2002, 3, 7-13.	1.6	20
216	Dehydrohalogenation during pyrolysis of brominated flame retardant containing high impact polystyrene (HIPS-Br) mixed with polyvinylchloride (PVC). Fuel, 2002, 81, 1819-1825.	3.4	51

#	Article	IF	CITATIONS
217	Characterization and Reactivity of Molybdenum Oxide Catalysts Supported on Niobiaâ€. Journal of Physical Chemistry B, 2001, 105, 4392-4399.	1.2	34
218	Characterization and reactivity of molybdenum oxide catalysts supported on anatase and rutile polymorphs of titania. Applied Catalysis A: General, 2001, 208, 291-305.	2.2	37
219	Characterization and reactivity of molybdenum oxide catalysts supported on zirconia. Applied Catalysis A: General, 2001, 211, 189-201.	2.2	68
220	Ammoxidation of 3-Picoline over Vanadia-Molybdena Catalysts Supported on Î ³ -Al ₂ O ₃ . Journal of Chemical Research, 2000, 2000, 408-410.	0.6	0
221	Characterization and reactivity of vanadia–molybdena catalysts supported on γ-Al2O3. Applied Catalysis A: General, 2000, 202, 133-139.	2.2	18
222	Dispersion and reactivity of vanadium oxide catalysts supported on niobia. Chemical Communications, 1999, , 1399-1400.	2.2	16
223	Characterization of MoO3/TiO2(Anatase) Catalysts by ESR,1H MAS NMR, and Oxygen Chemisorptionâ€. Journal of Physical Chemistry B, 1998, 102, 3936-3940.	1.2	30
224	Structure and Reactivity of Vanadium Oxide Catalysts Supported on Anatase TiO2â€. Journal of Physical Chemistry B, 1998, 102, 6792-6798.	1.2	73
225	Ammoxidation of 3-Picoline to Nicotinonitrile over Highly Dispersed V2O5/ZrO2 Catalystsâ€. Journal of Chemical Research Synopses, 1998, , 314-315.	0.3	11
226	Feedstock Recycling of Automobile Waste Bumpers: A Case Study., 0,,.		0
227	Pyrolysis of Sorghum straw: Effect of temperature and reaction environment on the product behavior., 0, 4, 64-69.		5
228	Investigation of saccharide-based carbons for charge storage applications. Biomass Conversion and Biorefinery, 0 , 1 .	2.9	0
229	Dilute Acid Hydrolysis and Bioconversion of Waste Potato to Ethanol and Yeast Lipid for Evaluating Carbon Flow in Waste Biorefinery. Bioenergy Research, 0, , 1.	2.2	1