Yang Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5453900/publications.pdf Version: 2024-02-01

ΥΛΝΟ ΗΛΝ

#	Article	IF	CITATIONS
1	Polymeric membranes for CO2 separation and capture. Journal of Membrane Science, 2021, 628, 119244.	4.1	235
2	Recent advances in polymeric membranes for CO2 capture. Chinese Journal of Chemical Engineering, 2018, 26, 2238-2254.	1.7	123
3	Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technology, 2013, 128, 818-822.	4.8	101
4	Nanotube-reinforced facilitated transport membrane for CO2/N2 separation with vacuum operation. Journal of Membrane Science, 2018, 567, 261-271.	4.1	71
5	Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. Journal of Membrane Science, 2019, 573, 476-484.	4.1	68
6	Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2018, 555, 379-387.	4.1	65
7	Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. Journal of Membrane Science, 2019, 575, 242-251.	4.1	60
8	Fabrication and field testing of spiral-wound membrane modules for CO2 capture from flue gas. Journal of Membrane Science, 2018, 556, 126-137.	4.1	53
9	Recent advances in polymeric facilitated transport membranes for carbon dioxide separation and hydrogen purification. Journal of Polymer Science, 2020, 58, 2435-2449.	2.0	46
10	Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas. Membranes, 2020, 10, 365.	1.4	42
11	Bioremediation of copper-containing wastewater by sulfate reducing bacteria coupled with iron. Journal of Environmental Management, 2013, 129, 350-356.	3.8	37
12	Fabrication and scale-up of multi-leaf spiral-wound membrane modules for CO2 capture from flue gas. Journal of Membrane Science, 2020, 595, 117504.	4.1	32
13	Design of Amine-Containing CO ₂ -Selective Membrane Process for Carbon Capture from Flue Gas. Industrial & Engineering Chemistry Research, 2020, 59, 5340-5350.	1.8	32
14	Hydrophilic and morphological modification of nanoporous polyethersulfone substrates for composite membranes in CO2 separation. Journal of Membrane Science, 2018, 565, 439-449.	4.1	29
15	CO2-selective membranes containing amino acid salts for CO2/N2 separation. Journal of Membrane Science, 2021, 638, 119696.	4.1	28
16	Scale-up of zeolite-Y/polyethersulfone substrate for composite membrane fabrication in CO2 separation. Journal of Membrane Science, 2018, 562, 56-66.	4.1	26
17	Treatment of copper wastewater by sulfate reducing bacteria in the presence of zero valent iron. International Journal of Mineral Processing, 2012, 112-113, 71-76.	2.6	25
18	Computational Evaluation of Carriers in Facilitated Transport Membranes for Postcombustion Carbon Capture. Journal of Physical Chemistry C, 2020, 124, 25322-25330.	1.5	25

Yang Han

#	Article	IF	CITATIONS
19	Nanostructured Membrane Materials for CO2 Capture: A Critical Review. Journal of Nanoscience and Nanotechnology, 2019, 19, 3173-3179.	0.9	19
20	Highly permeable polyethersulfone substrates with bicontinuous structure for composite membranes in CO2/N2 separation. Journal of Membrane Science, 2020, 612, 118443.	4.1	18
21	Facilitated transport membranes for H2 purification from coal-derived syngas: A techno-economic analysis. Journal of Membrane Science, 2021, 636, 119549.	4.1	17
22	Scale-up of amine-containing membranes for hydrogen purification for fuel cells. Journal of Membrane Science, 2019, 573, 465-475.	4.1	16
23	Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine. Journal of Membrane Science, 2021, 628, 119215.	4.1	16
24	Recent developments on polymeric membranes for CO ₂ capture from flue gas. Journal of Polymer Engineering, 2020, 40, 529-542.	0.6	13
25	Amine-Containing Membranes with Functionalized Multi-Walled Carbon Nanotubes for CO2/H2 Separation. Membranes, 2020, 10, 333.	1.4	13
26	Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria. Frontiers of Chemical Science and Engineering, 2013, 7, 177-184.	2.3	11
27	Computational Prediction of Water Sorption in Facilitated Transport Membranes. Journal of Physical Chemistry C, 2022, 126, 3661-3670.	1.5	9
28	Fluoride- and hydroxide-containing CO2-selective membranes for improving H2 utilization of solid oxide fuel cells. Journal of Membrane Science, 2020, 612, 118484.	4.1	8
29	Membrane processes for CO2 removal and fuel utilization enhancement for solid oxide fuel cells. Journal of Membrane Science, 2021, 620, 118846.	4.1	8
30	Mitigated carrier saturation of facilitated transport membranes for decarbonizing dilute CO2 sources: An experimental and techno-economic study. , 2022, 2, 100014.		7
31	Bicontinuous substrates with reduced pore restriction for CO2-selective composite membranes. Journal of Membrane Science, 2022, 654, 120547.	4.1	6
32	Matrimid substrates with bicontinuous surface and macrovoids in the bulk: A nearly ideal substrate for composite membranes in CO2 capture. Applied Energy, 2022, 311, 118624.	5.1	5
33	Moving beyond 90% Carbon Capture by Highly Selective Membrane Processes. Membranes, 2022, 12, 399.	1.4	5
34	A new measurement of amine steric hindrance – N exposure. Separation and Purification Technology, 2022, 299, 121601.	3.9	4