Yiqing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5453692/publications.pdf Version: 2024-02-01

VIONCLU

#	Article	IF	CITATIONS
1	Effect of bicarbonate on nitrate-induced photosensitive degradation of sulfamethoxazole under UV irradiation. Environmental Technology (United Kingdom), 2024, 45, 170-179.	2.2	1
2	Phosphate-induced activation of peracetic acid for diclofenac degradation: Kinetics, influence factors and mechanism. Chemosphere, 2022, 287, 132396.	8.2	28
3	Heterogeneous degradation of organic contaminants by peracetic acid activated with FeCo2S4 modified g-C3N4: Identification of reactive species and catalytic mechanism. Separation and Purification Technology, 2022, 282, 120082.	7.9	12
4	Hydroxylamine enhanced Cu(II)/peroxydisulfate system for diclofenac degradation: Efficiency, influence factors and mechanism. Journal of Environmental Chemical Engineering, 2022, 10, 107200.	6.7	5
5	Heat-activated peracetic acid for degradation of diclofenac: kinetics, influencing factors and mechanism. Environmental Technology (United Kingdom), 2022, , 1-9.	2.2	5
6	Efficient degradation of organic contaminants by magnetic cobalt ferrite combined with peracetic acid. Chemical Engineering Research and Design, 2022, 160, 376-384.	5.6	16
7	Cobalt doped graphitic carbon nitride as an effective catalyst for peracetic acid to degrade sulfamethoxazole. RSC Advances, 2022, 12, 13810-13819.	3.6	6
8	Efficient degradation of sulfamethoxazole using peracetic acid activated by zero-valent cobalt. Journal of Environmental Chemical Engineering, 2022, 10, 107783.	6.7	22
9	Boric acid enhanced degradation of organic pollutant by Cu(II)/peroxymonosulfate: Performance and mechanism. Separation and Purification Technology, 2022, 293, 121135.	7.9	9
10	Activated peracetic acid by Mn3O4 for sulfamethoxazole degradation: A novel heterogeneous advanced oxidation process. Chemosphere, 2022, 306, 135506.	8.2	19
11	Degradation of diclofenac by Fe(II)-activated peracetic acid. Environmental Technology (United) Tj ETQq1 1 0.78	84314 rgB 2.2	T /Qyerlock 1
12	Sulfamethoxazole degradation by UV-Fe3+ activated hydrogen sulfite. Chemosphere, 2021, 268, 128818.	8.2	20
13	Separation and concentration of o–toluidine and tricyclazole from water with micellar enhanced ultrafiltration based on sodium dodecyl sulfate surfactant. Environmental Technology (United) Tj ETQq1 1 0.784	131 2 .2gBT	/Overlock 10
14	Enhanced degradation of triclosan using UV–Fe ²⁺ synergistic activation of peracetic acid. Environmental Science: Water Research and Technology, 2021, 7, 630-637.	2.4	12
15	Kinetics and reaction mechanism of photochemical degradation of diclofenac by UV-activated peroxymonosulfate. RSC Advances, 2021, 11, 6804-6817.	3.6	17
16	Solubilization and separation of o-toluidine and tricyclazole in sodium dodecyl sulfate micelles in micellar enhanced ultrafiltration. Environmental Science and Pollution Research, 2021, 28, 42694-42705.	5.3	0
17	Rapid and continuous degradation of diclofenac by Fe(II)-activated persulfate combined with bisulfite. Separation and Purification Technology, 2021, 262, 118335.	7.9	31
18	Degradation of sulfamethoxazole by UV/sulfite in presence of oxygen: Efficiency, influence factors and mechanism. Separation and Purification Technology, 2021, 268, 118709.	7.9	32

Yiqing Liu

#	Article	IF	CITATIONS
19	Removal of diclofenac in water using peracetic acid activated by zero valent copper. Separation and Purification Technology, 2021, 276, 119319.	7.9	44
20	HCO3–/CO32– enhanced degradation of diclofenac by Cu(â…;)-activated peracetic acid: Efficiency and mechanism. Separation and Purification Technology, 2021, 277, 119434.	7.9	45
21	Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid. Separation and Purification Technology, 2020, 233, 115973.	7.9	95
22	A simple Fe ³⁺ /bisulfite system for rapid degradation of sulfamethoxazole. RSC Advances, 2020, 10, 30162-30168.	3.6	6
23	Degradation kinetics and mechanism of diclofenac by UV/peracetic acid. RSC Advances, 2020, 10, 9907-9916.	3.6	62
24	Degradation of diclofenac by Fe(II)-activated bisulfite: Kinetics, mechanism and transformation products. Chemosphere, 2019, 237, 124518.	8.2	64
25	Kinetics and pathways of diclofenac degradation by heat-activated persulfate. RSC Advances, 2019, 9, 31370-31377.	3.6	28
26	The self-catalysis of ferrate (VI) by its reactive byproducts or reductive substances for the degradation of diclofenac: Kinetics, mechanism and transformation products. Separation and Purification Technology, 2018, 192, 412-418.	7.9	72
27	Degradation of atrazine by ZnxCu1â^'xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO4â^'. Applied Catalysis B: Environmental, 2018, 221, 380-392.	20.2	212
28	Effects of HCO ₃ [–] on Degradation of Toxic Contaminants of Emerging Concern by UV/NO ₃ [–] . Environmental Science & Technology, 2018, 52, 12697-12707.	10.0	129
29	Efficient degradation of cytotoxic contaminants of emerging concern by UV/H ₂ O ₂ . Environmental Science: Water Research and Technology, 2018, 4, 1272-1281.	2.4	19
30	Quantitative assessment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline. Environmental Science and Pollution Research, 2016, 23, 14307-14315.	5.3	3
31	Kinetics and mechanism investigation on the destruction of oxytetracycline by UV-254 nm activation of persulfate. Journal of Hazardous Materials, 2016, 305, 229-239.	12.4	284
32	Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism. Water Research, 2016, 95, 195-204.	11.3	234
33	Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chemical Engineering Journal, 2016, 284, 1317-1327.	12.7	271
34	Photochemical degradation of oxytetracycline: Influence of pH and role of carbonate radical. Chemical Engineering Journal, 2015, 276, 113-121.	12.7	194
35	Treatment of Concentrated Leachate by Coagulation and Fly Ash Absorption. , 2011, , .		1