Peter Visser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5452986/publications.pdf

Version: 2024-02-01

414414 394421 1,048 34 19 32 citations h-index g-index papers 35 35 35 549 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Evaluation of the formation and protectiveness of a lithium-based conversion layer using electrochemical noise. Electrochimica Acta, 2022, 426, 140733.	5.2	8
2	Influence of TiO2 pigment particles on chromate ion transport in epoxy films. Npj Materials Degradation, 2021, 5, .	5.8	1
3	Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy. Corrosion Science, 2021, 180, 109189.	6.6	74
4	Editors' Choice—Dealloying-Driven Cerium Precipitation on Intermetallic Particles in Aerospace Aluminium Alloys. Journal of the Electrochemical Society, 2021, 168, 041505.	2.9	16
5	Mechanisms of Li Leaching from a LiCO3 Based Primer / Topcoat Paint System. Microscopy and Microanalysis, 2021, 27, 3054-3056.	0.4	O
6	Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection. Surface and Coatings Technology, 2021, 419, 127251.	4.8	30
7	Nanoscopic and in-situ cross-sectional observations of Li-based conversion coating formation using liquid-phase TEM. Npj Materials Degradation, 2021, 5, .	5.8	11
8	Laterally-resolved formation mechanism of a lithium-based conversion layer at the matrix and intermetallic particles in aerospace aluminium alloys. Corrosion Science, 2021, 190, 109651.	6.6	12
9	Li leaching from Li carbonate-primer: Transport pathway development from the scribe edge of a primer/topcoat system. Progress in Organic Coatings, 2021, 158, 106284.	3.9	3
10	Effect of cerium (IV) on thin sulfuric acid anodizing of 2024-T3 alloy. Journal of Materials Research and Technology, 2021, 15, 3240-3254.	5.8	15
11	Application of In Situ Liquid Cell Transmission Electron Microscopy in Corrosion Studies: A Critical Review of Challenges and Achievements. Corrosion, 2020, 76, 4-17.	1.1	22
12	Flash-PEO coatings loaded with corrosion inhibitors on AA2024. Surface and Coatings Technology, 2020, 402, 126317.	4.8	22
13	Dealloying-driven local corrosion by intermetallic constituent particles and dispersoids in aerospace aluminium alloys. Corrosion Science, 2020, 177, 108947.	6.6	73
14	In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation. Corrosion Science, 2020, 177, 108912.	6.6	61
15	Cross-sectional characterization of the conversion layer formed on AA2024-T3 by a lithium-leaching coating. Applied Surface Science, 2020, 512, 145665.	6.1	15
16	Active corrosion protection of various aluminium alloys by lithiumâ€leaching coatings. Surface and Interface Analysis, 2019, 51, 1276-1287.	1.8	28
17	Li leaching from Lithium Carbonate-primer: An emerging perspective of transport pathway development. Progress in Organic Coatings, 2019, 134, 103-118.	3.9	15
18	The chemical throwing power of lithium-based inhibitors from organic coatings on AA2024-T3. Corrosion Science, 2019, 150, 194-206.	6.6	27

#	Article	IF	CITATIONS
19	Compositional study of a corrosion protective layer formed by leachable lithium salts in a coating defect on AA2024-T3 aluminium alloys. Progress in Organic Coatings, 2018, 119, 65-75.	3.9	37
20	Mechanism of Passive Layer Formation on AA2024-T3 from Alkaline Lithium Carbonate Solutions in the Presence of Sodium Chloride. Journal of the Electrochemical Society, 2018, 165, C60-C70.	2.9	39
21	On the importance of irreversibility of corrosion inhibitors for active coating protection of AA2024-T3. Corrosion Science, 2018, 140, 272-285.	6.6	7 5
22	The use of odd random phase electrochemical impedance spectroscopy to study lithium-based corrosion inhibition by active protective coatings. Electrochimica Acta, 2018, 278, 363-373.	5.2	29
23	Electrochemical Evaluation of Corrosion Inhibiting Layers Formed in a Defect from Lithium-Leaching Organic Coatings. Journal of the Electrochemical Society, 2017, 164, C396-C406.	2.9	50
24	Particle induced gamma and X-ray emission spectroscopies of lithium based alloy coatings. Nuclear Instruments & Methods in Physics Research B, 2017, 404, 167-172.	1.4	10
25	Particle Characterisation and Depletion of Li2CO3 Inhibitor in a Polyurethane Coating. Coatings, 2017, 7, 106.	2.6	14
26	An investigation of the corrosion inhibitive layers generated from lithium oxalateâ€containing organic coating on AA2024â€T3 aluminium alloy. Surface and Interface Analysis, 2016, 48, 798-803.	1.8	23
27	Lithium salts as leachable corrosion inhibitors and potential replacement for hexavalent chromium in organic coatings for the protection of aluminum alloys. Journal of Coatings Technology Research, 2016, 13, 557-566.	2.5	61
28	Study of the formation of a protective layer in a defect from lithium-leaching organic coatings. Progress in Organic Coatings, 2016, 99, 80-90.	3.9	49
29	Protective Film Formation on AA2024-T3 Aluminum Alloy by Leaching of Lithium Carbonate from an Organic Coating. Journal of the Electrochemical Society, 2016, 163, C45-C53.	2.9	52
30	Aerospace Coatings. Springer Series in Materials Science, 2016, , 315-372.	0.6	14
31	The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings. Faraday Discussions, 2015, 180, 511-526.	3.2	81
32	Corrosion control: general discussion. Faraday Discussions, 2015, 180, 543-576.	3.2	12
33	Novel totally chrome free corrosion inhibiting coating technology for protection of aluminium alloys. Transactions of the Institute of Metal Finishing, 2011, 89, 291-294.	1.3	5
34	Reactivity of Carbenes and Ketenes in Low-Temperature Matrices. Carbene CO Trapping, Wolff Rearrangement, and Keteneâ^'Pyridine Ylide (Zwitterion) Observation. Journal of the American Chemical Society, 1996, 118, 12598-12602.	13.7	64