List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5452939/publications.pdf Version: 2024-02-01

LOSE M CARCIA

#	Article	IF	CITATIONS
1	Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs. PLoS ONE, 2013, 8, e61892.	1.1	152
2	High-Throughput parallel blind Virtual Screening using BINDSURF. BMC Bioinformatics, 2012, 13, S13.	1.2	150
3	Enhancing data parallelism for Ant Colony Optimization on GPUs. Journal of Parallel and Distributed Computing, 2013, 73, 42-51.	2.7	109
4	Multi-objective evolutionary feature selection for online sales forecasting. Neurocomputing, 2017, 234, 75-92.	3.5	94
5	Simulation of P systems with active membranes on CUDA. Briefings in Bioinformatics, 2010, 11, 313-322.	3.2	67
6	Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization. Cluster Computing, 2016, 19, 1-11.	3.5	65
7	Accelerating Fibre Orientation Estimation from Diffusion Weighted Magnetic Resonance Imaging Using GPUs. , 2012, , .		51
8	Simulating a P system based efficient solution to SAT by using GPUs. The Journal of Logic and Algebraic Programming, 2010, 79, 317-325.	1.4	47
9	A Direct Coherence Protocol for Many-Core Chip Multiprocessors. IEEE Transactions on Parallel and Distributed Systems, 2010, 21, 1779-1792.	4.0	32
10	The GPU on the simulation of cellular computing models. Soft Computing, 2012, 16, 231-246.	2.1	29
11	Parallelization strategies for ant colony optimisation on GPUs. , 2011, , .		27
12	TreeEFM: calculating elementary flux modes using linear optimization in a tree-based algorithm. Bioinformatics, 2015, 31, 897-904.	1.8	26
13	DiCo-CMP: Efficient cache coherency in tiled CMP architectures. Parallel and Distributed Processing Symposium (IPDPS), Proceedings of the International Conference on, 2008, , .	1.0	25
14	DualFS. , 2002, , .		21
15	Energy Efficiency Analysis of GPUs. , 2012, , .		18
16	A methodology based on Deep Learning for advert value calculation in CPM, CPC and CPA networks. Soft Computing, 2017, 21, 651-665.	2.1	17
17	The Design of New Journaling File Systems: The DualFS Case. IEEE Transactions on Computers, 2007, 56, 267-281.	2.4	16

2

JOSE M GARCIA

#	Article	IF	CITATIONS
19	Enhancing GPU parallelism in nature-inspired algorithms. Journal of Supercomputing, 2013, 63, 773-789.	2.4	16
20	A lossy 3D wavelet transform for high-quality compression of medical video. Journal of Systems and Software, 2009, 82, 526-534.	3.3	14
21	ASCIB. , 2012, , .		14
22	π-TM: Pessimistic invalidation for scalable lazy hardware transactional memory. , 2012, , .		14
23	Improving the EFMs quality by augmenting their representativeness in LP methods. BMC Systems Biology, 2018, 12, 101.	3.0	14
24	Reducing 3D Fast Wavelet Transform Execution Time Using Blocking and the Streaming SIMD Extensions. Journal of Signal Processing Systems, 2005, 41, 209-223.	1.0	13
25	A scalable organization for distributed directories. Journal of Systems Architecture, 2010, 56, 77-87.	2.5	13
26	Parallelization of Virtual Screening in Drug Discovery on Massively Parallel Architectures. , 2012, , .		13
27	Comparative evaluation of platforms for parallel Ant Colony Optimization. Journal of Supercomputing, 2014, 69, 318-329.	2.4	12
28	A. novel approach to reduce L2 miss latency in shared-memory multiprocessors. , 2002, , .		11
29	Efficient microarchitecture policies for accurately adapting to power constraints. , 2009, , .		11
30	A performance/cost model for a CUDA drug discovery application on physical and public cloud infrastructures. Concurrency Computation Practice and Experience, 2014, 26, 1787-1798.	1.4	11
31	A Novel Lightweight Directory Architecture for Scalable Shared-Memory Multiprocessors. Lecture Notes in Computer Science, 2005, , 582-591.	1.0	10
32	Memory conscious 3D wavelet transform. , 0, , .		9
33	Distance-aware round-robin mapping for large NUCA caches. , 2009, , .		9
34	EMC ² : Extending Magny-Cours coherence for large-scale servers. , 2010, , .		9
35	Accelerating multiple target drug screening on GPUs. , 2011, , .		9
36	An efficient cache design for scalable glueless shared-memory multiprocessors. , 2006, , .		8

#	Article	IF	CITATIONS
37	Modeling the impact of permanent faults in caches. Transactions on Architecture and Code Optimization, 2013, 10, 1-23.	1.6	8
38	Accelerating collision detection for large-scale crowd simulation on multi-core and many-core architectures. International Journal of High Performance Computing Applications, 2014, 28, 33-49.	2.4	8
39	A Performance/Cost Evaluation for a GPU-Based Drug Discovery Application on Volunteer Computing. BioMed Research International, 2014, 2014, 1-8.	0.9	8
40	Toward energy efficiency in heterogeneous processors: findings on virtual screening methods. Concurrency Computation Practice and Experience, 2014, 26, 1832-1846.	1.4	8
41	Code modernization strategies to 3-D Stencil-based applications on Intel Xeon Phi: KNC and KNL. Computers and Mathematics With Applications, 2017, 74, 2557-2571.	1.4	8
42	An analytical model for the calculation of the Expected Miss Ratio in faulty caches. , 2011, , .		7
43	Stencil computations on heterogeneous platforms for the Jacobi method: GPUs versus Cell BE. Journal of Supercomputing, 2012, 62, 787-803.	2.4	7
44	Eager Beats Lazy: Improving Store Management in Eager Hardware Transactional Memory. IEEE Transactions on Parallel and Distributed Systems, 2013, 24, 2192-2201.	4.0	7
45	Left ventricular non-compaction cardiomyopathy automatic diagnosis using a deep learning approach. Computer Methods and Programs in Biomedicine, 2022, 214, 106548.	2.6	7
46	An efficient implementation of a 3D wavelet transform based encoder on hyper-threading technology. Parallel Computing, 2007, 33, 54-72.	1.3	6
47	Eager Meets Lazy: The Impact of Write-Buffering on Hardware Transactional Memory. , 2011, , .		6
48	Accelerated Conformational Entropy Calculations Using Graphic Processing Units. Journal of Chemical Information and Modeling, 2013, 53, 2057-2064.	2.5	6
49	Managing resources dynamically in hybrid photonicâ€electronic networksâ€onâ€chip. Concurrency Computation Practice and Experience, 2014, 26, 2530-2550.	1.4	6
50	ICCI: In-Cache Coherence Information. IEEE Transactions on Computers, 2015, 64, 995-1014.	2.4	6
51	Efficient, semantics-rich transformation and integration of large datasets. Expert Systems With Applications, 2019, 133, 198-214.	4.4	6
52	Direct Coherence: Bringing Together Performance and Scalability in Shared-Memory Multiprocessors. , 2007, , 147-160.		6
53	Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols for Many-Core CMPs. Lecture Notes in Computer Science, 2009, , 11-27.	1.0	6
54	REPAS: Reliable Execution for Parallel ApplicationS in Tiled-CMPs. Lecture Notes in Computer Science, 2009, , 321-333.	1.0	6

#	Article	lF	CITATIONS
55	Energy-Efficient Cache Coherence Protocols in Chip-Multiprocessors for Server Consolidation. , 2011, , , .		5
56	Evaluation of the 3-D finite difference implementation of the acoustic diffusion equation model on massively parallel architectures. Computers and Electrical Engineering, 2015, 46, 190-201.	3.0	5
57	High-throughput fuzzy clustering on heterogeneous architectures. Future Generation Computer Systems, 2020, 106, 401-411.	4.9	5
58	ACOTSP-MF: A memory-friendly and highly scalable ACOTSP approach. Engineering Applications of Artificial Intelligence, 2021, 99, 104131.	4.3	5
59	Applying Intel's oneAPI to a machine learning case study. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	5
60	A log-based redundant architecture for reliable parallel computation. , 2010, , .		4
61	DAPSCO. Transactions on Architecture and Code Optimization, 2012, 8, 1-19.	1.6	4
62	Re-engineering the ant colony optimization for CMP architectures. Journal of Supercomputing, 2020, 76, 4581-4602.	2.4	4
63	Pi-TM: Pessimistic Invalidation for Scalable Lazy Hardware Transactional Memory. , 2011, , .		3
64	Hardware transactional memory with software-defined conflicts. Transactions on Architecture and Code Optimization, 2012, 8, 1-20.	1.6	3
65	Adaptive Selection of Cache Indexing Bits for Removing Conflict Misses. IEEE Transactions on Computers, 2014, , 1-1.	2.4	3
66	ZEBRA: Data-Centric Contention Management in Hardware Transactional Memory. IEEE Transactions on Parallel and Distributed Systems, 2014, 25, 1359-1369.	4.0	3
67	Deploying deep learning approaches to left ventricular non-compaction measurement. Journal of Supercomputing, 2021, 77, 10138-10151.	2.4	3
68	A new approach to provide real-time services on high-speed local area networks. , 0, , .		2
69	Selective branch prediction reversal by correlating with data values and control flow. , 0, , .		2
70	Extending Magny-Cours Cache Coherence. IEEE Transactions on Computers, 2012, 61, 593-606.	2.4	2
71	Flux Coupling and the Objective Functions' Length in EFMs. Metabolites, 2020, 10, 489	1.3	2
72	Boosting the extraction of elementary flux modes in genome-scale metabolic networks using the linear programming approach. Bioinformatics, 2020, 36, 4163-4170.	1.8	2

#	Article	IF	CITATIONS
73	Improving the performance of parallel triangularization of a sparse matrix using a reconfigurable multicomputer. Lecture Notes in Computer Science, 1996, , 493-502.	1.0	2
74	A New Approach to Obtain EFMs Using Graph Methods Based on the Shortest Path between End Nodes. Lecture Notes in Computer Science, 2015, , 641-649.	1.0	2
75	Implementing P Systems Parallelism by Means of GPUs. Lecture Notes in Computer Science, 2010, , 227-241.	1.0	2
76	On Deadlock Frequency during Dynamic Reconfiguration in NOWs. Lecture Notes in Computer Science, 2001, , 630-638.	1.0	2
77	Performance portability in a real world application: PHAST applied to Caffe. International Journal of High Performance Computing Applications, 2022, 36, 419-439.	2.4	2
78	Analyzing Cache Coherence Protocols for Server Consolidation. , 2010, , .		1
79	The Impact of Non-coherent Buffers on Lazy Hardware Transactional Memory Systems. , 2011, , .		1
80	A fault-tolerant architecture for parallel applications in tiled-CMPs. Journal of Supercomputing, 2012, 61, 997-1023.	2.4	1
81	Efficient Eager Management of Conflicts for Scalable Hardware Transactional Memory. IEEE Transactions on Parallel and Distributed Systems, 2013, 24, 59-71.	4.0	1
82	Soft-error mitigation by means of decoupled transactional memory threads. Distributed Computing, 2015, 28, 75-90.	0.7	1
83	Representativeness of a Set of Metabolic Pathways. Lecture Notes in Computer Science, 2017, , 659-667.	1.0	1
84	A Genetic Algorithm for Solving a Production and Delivery Scheduling Problem with Time Windows. Lecture Notes in Computer Science, 2002, , 371-380.	1.0	1
85	HDNN: a cross-platform MLIR dialect for deep neural networks. Journal of Supercomputing, 0, , 1.	2.4	1
86	First Experiences on Applying Deep Learning Techniques to Prostate Cancer Detection. Advances in Parallel Computing, 2020, , .	0.3	1
87	Two proposals for the inclusion of directory information in the last-level private caches of glueless shared-memory multiprocessors. Journal of Parallel and Distributed Computing, 2008, 68, 1413-1424.	2.7	0
88	Leakage-efficient design of value predictors through state and non-state preserving techniques. Journal of Supercomputing, 2011, 55, 28-50.	2.4	0
89	Improving drug discovery using a neural networks based parallel scoring function. , 2013, , .		0
90	Exploiting silicon photonics for energyâ€efficient heterogeneous parallel architectures. Concurrency Computation Practice and Experience, 2014, 26, 2489-2491.	1.4	0

#	Article	IF	CITATIONS
91	Evaluating the SAT problem on P systems for different high-performance architectures. Journal of Supercomputing, 2014, 69, 248-272.	2.4	0
92	Application of High Performance Computing Techniques to the Semantic Data Transformation. Advances in Intelligent Systems and Computing, 2018, , 691-700.	0.5	0
93	Offloading strategies for Stencil kernels on the KNC Xeon Phi architecture: Accuracy versus performance. International Journal of High Performance Computing Applications, 2020, 34, 199-207.	2.4	0
94	Assessing MPI Performance on QsNet II. Lecture Notes in Computer Science, 2005, , 399-406.	1.0	0