Ramon Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5452805/publications.pdf

Version: 2024-02-01

		279487	377514
78	1,504	23	34
papers	citations	h-index	g-index
79	79	79	1610
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rheological Properties of Corn Starch Gels With the Addition of Hydroxypropyl Methylcellulose of Different Viscosities. Frontiers in Nutrition, 2022, 9, 866789.	1.6	5
2	Effect of the addition of different sodium alginates on viscoelastic, structural features and hydrolysis kinetics of corn starch gels. Food Bioscience, 2022, 47, 101628.	2.0	9
3	Interactions between Ascophyllum nodosum Seaweeds Polyphenols and Native and Gelled Corn Starches. Foods, 2022, 11, 1165.	1.9	3
4	Potential applications of Pickering emulsions and high internal-phase emulsions (HIPEs) stabilized by starch particles. Current Opinion in Food Science, 2022, 46, 100866.	4.1	9
5	In vitro inhibition of starch digestive enzymes by ultrasoundâ€essisted extracted polyphenols from <i>Ascophyllum nodosum</i> seaweeds. Journal of Food Science, 2022, 87, 2405-2416.	1.5	3
6	Unraveling the impact of viscosity and starch type on the <i>in vitro</i> starch digestibility of different gels. Food and Function, 2022, 13, 7582-7590.	2.1	7
7	Polyphenols extraction kinetics from Ascophyllum nodosum seaweed employing water and saltwater: Effect of ultrasound sonication. Algal Research, 2022, 66, 102773.	2.4	4
8	Designing a functional rice muffin formulated with prebiotic oligosaccharides and sugar reduction. Food Bioscience, 2021, 40, 100858.	2.0	6
9	Aqueous extracts characteristics obtained by ultrasound-assisted extraction from Ascophyllum nodosum seaweeds: effect of operation conditions. Journal of Applied Phycology, 2021, 33, 3297-3308.	1.5	10
10	Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Carbohydrate Polymers, 2021, 272, 118455.	5.1	17
11	In vitro digestibility of gels from different starches: Relationship between kinetic parameters and microstructure. Food Hydrocolloids, 2021, 120, 106909.	5.6	17
12	Estimation of viscosity and hydrolysis kinetics of corn starch gels based on microstructural features using a simplified model. Carbohydrate Polymers, 2021, 273, 118549.	5.1	15
13	Glycosyl squaramides, a new class of supramolecular gelators. Soft Matter, 2020, 16, 7916-7926.	1.2	11
14	Drying of edible seaweeds., 2020,, 131-154.		3
15	Effect of brown seaweed addition and starch gelatinization on gluten-free chestnut flour doughs and cookies. Journal of Food Measurement and Characterization, 2019, 13, 2571-2580.	1.6	5
16	Determination of thermal transitions of gluten-free chestnut flour doughs enriched with brown seaweed powders and antioxidant properties of baked cookies. Heliyon, 2019, 5, e01805.	1.4	13
17	Thermoâ€Rheology of a Prolineâ€Based Surfaceâ€Active Ionic Liquid: Mixtures with Water and n â€Octane. Chemical Engineering and Technology, 2019, 42, 1952-1959.	0.9	6
18	Starch hydrogels from discarded chestnuts produced under different temperatureâ€time gelatinisation conditions. International Journal of Food Science and Technology, 2019, 54, 1179-1186.	1.3	15

#	Article	IF	CITATIONS
19	Production of hydrogels with different mechanical properties by starch roasting: A valorization of industrial chestnut by-products. Industrial Crops and Products, 2019, 128, 377-384.	2.5	4
20	Extraction and characterization of phlorotannin-enriched fractions from the Atlantic seaweed Bifurcaria bifurcata and evaluation of their cytotoxic activity in murine cell line. Journal of Applied Phycology, 2019, 31, 2573-2583.	1.5	16
21	Effect of brown seaweed powder on physical and textural properties of wheat bread. European Food Research and Technology, 2018, 244, 1-10.	1.6	45
22	Rheological Effect of Gelatinisation Using Different Temperature-Time Conditions on Potato Starch Dispersions: Mechanical Characterisation of the Obtained Gels. Food and Bioprocess Technology, 2018, 11, 132-140.	2.6	21
23	Structural features and water sorption isotherms of carrageenans: A prediction model for hybrid carrageenans. Carbohydrate Polymers, 2018, 180, 72-80.	5.1	24
24	Air-drying and rehydration characteristics of the brown seaweeds, Ascophylum nodosum and Undaria pinnatifida. Journal of Applied Phycology, 2018, 30, 1259-1270.	1.5	16
25	Air drying modelling of Mastocarpus stellatus seaweed a source of hybrid carrageenan. Heat and Mass Transfer, 2018, 54, 177-184.	1.2	11
26	Viscoelastic and Textural Characteristics of Gels Obtained from Potato Starch Roasted under Several Temperature-Time Conditions. International Journal of Polymer Science, 2018, 2018, 1-11.	1.2	6
27	Water Sorption Isotherms and Air Drying Kinetics of <i>Fucus vesiculosus </i> Brown Seaweed. Journal of Food Processing and Preservation, 2017, 41, e12997.	0.9	12
28	Rheology of aqueous mixtures of tragacanth and guar gums: Effects of temperature and polymer ratio. Food Hydrocolloids, 2017, 69, 293-300.	5. 6	41
29	The Effect of Hybrid Carrageenan on the Thermo-rheological Properties of Gluten-Free Flour Doughs Using a Modified Kneading Protocol. Food and Bioprocess Technology, 2017, 10, 603-613.	2.6	1
30	Thermal reversibility of kappa/iota-hybrid carrageenan gels extracted from Mastocarpus stellatus at different ionic strengths. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 414-420.	2.7	22
31	Enhancement effect on apparent viscosity of aqueous tragacanth gum dispersions promoted by sugars. International Journal of Food Science and Technology, 2017, 52, 2677-2683.	1.3	5
32	Aqueous extracts of Ascophyllum nodosum obtained by ultrasound-assisted extraction: effects of drying temperature of seaweed on the properties of extracts. Journal of Applied Phycology, 2017, 29, 3191-3200.	1.5	32
33	Rheological behaviour of aqueous methylcellulose systems: Effect of concentration, temperature and presence of tragacanth. LWT - Food Science and Technology, 2017, 84, 764-770.	2.5	18
34	Coeliacs cannot live by glutenâ€free bread alone – every once in awhile they need antioxidants. International Journal of Food Science and Technology, 2017, 52, 81-90.	1.3	41
35	Selective aliphatic/aromatic organogelation controlled by the side chain of serine amphiphiles. RSC Advances, 2016, 6, 108093-108104.	1.7	5
36	Gelling characteristics and rheology of kappa/iota-hybrid carrageenans extracted from Mastocarpus stellatus dried at different temperatures. Journal of Applied Phycology, 2016, 28, 3635-3644.	1.5	7

#	Article	IF	CITATIONS
37	Drying temperature effect on powder physical properties and aqueous extract characteristics of Fucus vesiculosus. Journal of Applied Phycology, 2016, 28, 2485-2494.	1.5	24
38	Rheology of ${\hat l}^{\circ}/{\hat l}^1$ -hybrid carrageenan from Mastocarpus stellatus: Critical parameters for the gel formation. International Journal of Biological Macromolecules, 2016, 86, 418-424.	3.6	22
39	Water sorption isotherms and air drying kinetics modelling of the brown seaweed Bifurcaria bifurcata. Journal of Applied Phycology, 2016, 28, 609-618.	1.5	27
40	Starch transitions of different gluten free flour doughs determined by dynamic thermal mechanical analysis and differential scanning calorimetry. Carbohydrate Polymers, 2015, 127, 160-167.	5.1	18
41	Physicochemical characterization of white, yellow and purple maize flours and rheological characterization of their doughs. Journal of Food Science and Technology, 2015, 52, 7954-7963.	1.4	42
42	Rheology of Gluten-Free Doughs from Blends of Chestnut and Rice Flours. Food and Bioprocess Technology, 2013, 6, 1476-1485.	2.6	43
43	Influence of the chestnuts drying temperature on the rheological properties of their doughs. Food and Bioproducts Processing, 2013, 91, 7-13.	1.8	30
44	Effect of chia (Sativa hispanica L.) and hydrocolloids on the rheology of gluten-free doughs based on chestnut flour. LWT - Food Science and Technology, 2013, 50, 160-166.	2.5	51
45	Water sorption isotherms of globe artichoke leaves. Agricultural Sciences, 2013, 04, 63-69.	0.2	O
46	Technological Assessment of Chestnut Flour Doughs Regarding to Doughs from Other Commercial Flours and Formulations. Food and Bioprocess Technology, 2012, 5, 2301-2310.	2.6	37
47	Water Adsorption Isotherms of Chia (Salvia hispanica L.) Seeds. Food and Bioprocess Technology, 2012, 5, 1077-1082.	2.6	19
48	Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydrate Polymers, 2012, 89, 592-598.	5.1	111
49	EFFECT OF SHORTENINGS ON THE RHEOLOGY OF GLUTENâ€FREE DOUGHS: STUDY OF CHESTNUT FLOUR WITH CHIA FLOUR, OLIVE AND SUNFLOWER OILS. Journal of Texture Studies, 2012, 43, 375-383.	1.1	33
50	Rheological properties of gelatinized chestnut starch dispersions: Effect of concentration and temperature. Journal of Food Engineering, 2012, 112, 94-99.	2.7	51
51	Drying Kinetics of Biofilms Obtained from Chestnut Starch and Carrageenan with and without Glycerol. Drying Technology, 2011, 29, 1058-1065.	1.7	35
52	Rheological properties of commercial chestnut flour doughs with different gums. International Journal of Food Science and Technology, 2011, 46, 2085-2095.	1.3	39
53	APPARENT VISCOSITY OF BINARY AND TERNARY SYSTEMS OF TRAGACANTH, GUAR GUM AND METHYLCELLULOSE AT SEMIDILUTE RANGE OF CONCENTRATION. Journal of Food Process Engineering, 2011, 34, 475-490.	1.5	O
54	Air drying and colour characteristics of chestnuts pre-submitted to osmotic dehydration with sodium chloride. Food and Bioproducts Processing, 2011, 89, 109-115.	1.8	17

#	Article	IF	CITATIONS
55	Rheology of commercial chestnut flour doughs incorporated with gelling agents. Food Hydrocolloids, 2011, 25, 1361-1371.	5.6	53
56	Desorption Isotherms and Net Isosteric Heat of Chestnut Flour and Starch. Food and Bioprocess Technology, 2011, 4, 1497-1504.	2.6	26
57	Steady-shear flow of semidilute guar gum solutions with sucrose, glucose and sodium chloride at different temperatures. Journal of Food Engineering, 2011, 107, 234-240.	2.7	17
58	Rheological behaviour of aqueous systems of tragacanth and guar gums with storage time. Journal of Food Engineering, 2010, 96, 107-113.	2.7	63
59	RHEOLOGICAL PROPERTIES OF AQUEOUS DISPERSIONS OF TRAGACANTH AND GUAR GUMS AT DIFFERENT CONCENTRATIONS. Journal of Texture Studies, 2010, 41, 396-415.	1.1	34
60	Analysis of Chestnut Cellular Tissue during Osmotic Dehydration, Air Drying, and Rehydration Processes. Drying Technology, 2010, 29, 10-18.	1.7	15
61	Analysis of Moisture Desorption Isotherms of Eggplant (Solanum melongena). Food Science and Technology International, 2010, 16, 417-425.	1.1	3
62	Simplified algorithm for the prediction of water sorption isotherms of fruits, vegetables and legumes based upon chemical composition. Journal of Food Engineering, 2009, 94, 334-343.	2.7	41
63	Kinematic Viscosity of Aqueous Solutions of Ethanol and Glucose in the Range of Temperatures from 20 to 45°C. International Journal of Food Properties, 2009, 12, 834-843.	1.3	2
64	Kinematic Viscosity and Refractive Index of Aqueous Solutions of Ethanol and Glycerol. Industrial & Engineering Chemistry Research, 2009, 48, 2157-2161.	1.8	12
65	Diffusion of Water in Chestnut Fruits during Drying and Rehydration Processes at Different Temperatures. Defect and Diffusion Forum, 2008, 273-276, 758-763.	0.4	1
66	Kinematic Viscosity of Ternary Aqueous Solutions of Ethanol and Sucrose. International Journal of Food Properties, 2007, 10, 435-444.	1.3	4
67	Rheological behaviour of chestnuts under compression tests. International Journal of Food Science and Technology, 2007, 42, 1188-1194.	1.3	8
68	Mass Transfer Analysis during Osmotic Dehydration of Pumpkin Fruits Using Binary and Ternary Aqueous Solutions of Sucrose and Sodium Chloride. Defect and Diffusion Forum, 2006, 258-260, 213-218.	0.4	0
69	Effective Diffusion Coefficients during Osmotic Dehydration of Vegetables with Different Initial Porosity. Defect and Diffusion Forum, 2006, 258-260, 575-585.	0.4	0
70	Water sorption isotherms of fresh and partially osmotic dehydrated pumpkin parenchyma and seeds at several temperatures. European Food Research and Technology, 2005, 220, 163-167.	1.6	18
71	Evaluation of mass transfer coefficients and volumetric shrinkage during osmotic dehydration of apple using sucrose solutions in static and non-static conditions. Journal of Food Engineering, 2003, 57, 25-31.	2.7	43
72	Viscosities of Binary and Ternary Aqueous Solutions of 2-Amino-2-methylpropan-1-ol, 2-Amino-2-methylpropane-1,3-diol, and 2-Amino-2-methylpropan-1-ol Hydrochloride. Collection of Czechoslovak Chemical Communications, 2002, 67, 293-301.	1.0	2

#	Article	IF	Citations
73	Viscosities of Single-Solute and Binary-Solute Aqueous Systems of Monoethanolamine, Diethanolamine, and 2-Amino-2-methyl-1-propanol. Journal of Chemical & Description (2001), 46, 276-280.	1.0	21
74	Kinematic viscosity prediction for aqueous solutions with various solutes. Chemical Engineering Journal, 2001, 81, 35-40.	6.6	16
75	Viscosities of Aqueous Solutions of Fe2(SO4)3Containing NaNO3, KNO3, NaBr, or KBr from 293.1 to 323.1 K. Journal of Chemical & Engineering Data, 1998, 43, 325-328.	1.0	5
76	Viscosities of Solutions of K2SO4, Na2SO4, KCl, NaCl, KNO3, and NaNO3in (K2CO3+ KHCO3) and (Na2CO3+ NaHCO3) Buffers. Journal of Chemical & Engineering Data, 1997, 42, 93-97.	1.0	9
77	Viscosity of Binary and Ternary Aqueous Systems of NaH2PO4, Na2HPO4, Na3PO4, KH2PO4, K2HPO4, and K3PO4. Journal of Chemical & Engineering Data, 1996, 41, 906-909.	1.0	27
78	Mass Transfer Analysis during Osmotic Dehydration of Eggplant Using Binary Solutions of Sucrose and Sodium Chloride. Defect and Diffusion Forum, 0, 273-276, 413-418.	0.4	0