
Tomasz Jaworski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5452763/publications.pdf Version: 2024-02-01

TOMASZ LAWODSKI

#	Article	IF	CITATIONS
1	Structural and Functional Characterization of Nrf2 Degradation by the Glycogen Synthase Kinase 3/β-TrCP Axis. Molecular and Cellular Biology, 2012, 32, 3486-3499.	2.3	338
2	GSK3 and Alzheimer's disease: facts and fiction…. Frontiers in Molecular Neuroscience, 2011, 4, 17.	2.9	128
3	Fractalkine activates NRF2/NFE2L2 and heme oxygenase 1 to restrain tauopathy-induced microgliosis. Brain, 2014, 137, 78-91.	7.6	112
4	Dendritic Degeneration, Neurovascular Defects, and Inflammation Precede Neuronal Loss in a Mouse Model for Tau-Mediated Neurodegeneration. American Journal of Pathology, 2011, 179, 2001-2015.	3.8	105
5	GSK-3 <i>β</i> at the Intersection of Neuronal Plasticity and Neurodegeneration. Neural Plasticity, 2019, 2019, 1-14.	2.2	98
6	AAV-Tau Mediates Pyramidal Neurodegeneration by Cell-Cycle Re-Entry without Neurofibrillary Tangle Formation in Wild-Type Mice. PLoS ONE, 2009, 4, e7280.	2.5	71
7	GSK-3Î \pm /Î ² kinases and amyloid production in vivo. Nature, 2011, 480, E4-E5.	27.8	67
8	Alzheimer's disease: Old problem, new views from transgenic and viral models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 808-818.	3.8	43
9	GSK-3β and MMP-9 Cooperate in the Control of Dendritic Spine Morphology. Molecular Neurobiology, 2017, 54, 200-211.	4.0	43
10	The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment. Brain Structure and Function, 2017, 222, 393-415.	2.3	40
11	Degradation and beyond: Control of androgen receptor activity by the proteasome system. Cellular and Molecular Biology Letters, 2006, 11, 109-31.	7.0	37
12	Neurological characterization of mice deficient in GSK3α highlight pleiotropic physiological functions in cognition and pathological activity as Tau kinase. Molecular Brain, 2013, 6, 27.	2.6	32
13	Extracellular Matrix Modulation Is Driven by Experience-Dependent Plasticity During Stroke Recovery. Molecular Neurobiology, 2018, 55, 2196-2213.	4.0	31
14	Distinct circuits in rat central amygdala for defensive behaviors evoked by socially signaled imminent versus remote danger. Current Biology, 2021, 31, 2347-2358.e6.	3.9	28
15	Early Structural and Functional Defects in Synapses and Myelinated Axons in Stratum Lacunosum Moleculare in Two Preclinical Models for Tauopathy. PLoS ONE, 2014, 9, e87605.	2.5	28
16	Modeling of Tau-Mediated Synaptic and Neuronal Degeneration in Alzheimer's Disease. International Journal of Alzheimer's Disease, 2010, 2010, 1-10.	2.0	22
17	Tauopathy Differentially Affects Cell Adhesion Molecules in Mouse Brain: Early Down-Regulation of Nectin-3 in Stratum Lacunosum Moleculare. PLoS ONE, 2013, 8, e63589.	2.5	21
18	Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118745.	4.1	20

Tomasz Jaworski

#	Article	IF	CITATIONS
19	CSK3β activity alleviates epileptogenesis and limits GluA1 phosphorylation. EBioMedicine, 2019, 39, 377-387.	6.1	17
20	Terminal hypothermic <scp>T</scp> au. <scp>P</scp> 301 <scp>L</scp> mice have increased Tau phosphorylation independently of glycogen synthase kinase 3α/β. European Journal of Neuroscience, 2014, 40, 2442-2453.	2.6	11
21	Androgen receptor and c-Myc transcription factors as putative partners in the in vivo cross-talk between androgen receptor-mediated and c-Met-mediated signalling pathways Acta Biochimica Polonica, 2007, 54, 253-259.	0.5	5
22	Antifolate/folate-activated HGF/c-Met signalling pathways in mouse kidneys—the putative role of their downstream effectors in cross-talk with androgen receptor. Archives of Biochemistry and Biophysics, 2009, 483, 111-119.	3.0	3
23	Dysregulation of miRNAs Levels in Glycogen Synthase Kinase-3β Overexpressing Mice and the Role of miR-221-5p in Synaptic Function. Neuroscience, 2022, 490, 287-295.	2.3	3
24	Early synaptic deficits in GSK-3 \hat{l}^2 overexpressing mice. Neuroscience Letters, 2022, , 136744.	2.1	2