Ying Wan

List of Publications by Citations

Source: https://exaly.com/author-pdf/5452667/ying-wan-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

25 843 16 25 g-index

25 1,223 9.7 4.53 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
25	Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants. <i>Chemical Engineering Journal</i> , 2017 , 314, 240-248	14.7	86
24	Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. <i>Acta Biomaterialia</i> , 2019 , 91, 60-71	10.8	81
23	Application of Cobalt/Peracetic Acid to Degrade Sulfamethoxazole at Neutral Condition: Efficiency and Mechanisms. <i>Environmental Science & Environmental Science & Environment</i>	10.3	78
22	Enhanced degradation of organic contaminants by zero-valent iron/sulfite process under simulated sunlight irradiation. <i>Water Research</i> , 2019 , 149, 169-178	12.5	72
21	Redox-Sensitive Hydroxyethyl Starch-Doxorubicin Conjugate for Tumor Targeted Drug Delivery. <i>ACS Applied Materials & Delivery (Sense)</i> 10, 100 (1997). Redox-Sensitive Hydroxyethyl Starch-Doxorubicin Conjugate for Tumor Targeted Drug Delivery.	9.5	71
20	Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. <i>Water Research</i> , 2018 , 133, 69-78	12.5	61
19	Comparative study on the pretreatment of algae-laden water by UV/persulfate, UV/chlorine, and UV/HO: Variation of characteristics and alleviation of ultrafiltration membrane fouling. <i>Water Research</i> , 2019 , 158, 213-226	12.5	57
18	Thermal Activation of Peracetic Acid in Aquatic Solution: The Mechanism and Application to Degrade Sulfamethoxazole. <i>Environmental Science & Environmental Science & Environm</i>	10.3	52
17	EAmylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery. <i>ACS Applied Materials & Delivery (Naterials & Delive</i>	9.5	50
16	Ultraviolet/persulfate (UV/PS) pretreatment of typical natural organic matter (NOM): Variation of characteristics and control of membrane fouling. <i>Chemosphere</i> , 2019 , 214, 136-147	8.4	34
15	Enhancing Doxorubicin Delivery toward Tumor by Hydroxyethyl Starch-g-Polylactide Partner Nanocarriers. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 10481-10493	9.5	31
14	Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. <i>Journal of Controlled Release</i> , 2018 , 275, 67-77	11.7	30
13	Chemical cleaning of algae-fouled ultrafiltration (UF) membrane by sodium hypochlorite (NaClO): Characterization of membrane and formation of halogenated by-products. <i>Journal of Membrane Science</i> , 2020 , 598, 117662	9.6	27
12	A highly sensitive label-free electrochemical immunosensor based on poly(indole-5-carboxylicacid) with ultra-high redox stability. <i>Biosensors and Bioelectronics</i> , 2019 , 141, 111406	11.8	23
11	Formation of halogenated by-products during chemical cleaning of humic acid-fouled UF membrane by sodium hypochlorite solution. <i>Chemical Engineering Journal</i> , 2018 , 332, 76-84	14.7	22
10	Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application. <i>ACS Applied Materials & District Research</i> , 13, 25374-25382	9.5	18
9	Transformation of acetaminophen in solution containing both peroxymonosulfate and chlorine: Performance, mechanism, and disinfection by-product formation. <i>Water Research</i> , 2021 , 189, 116605	12.5	13

LIST OF PUBLICATIONS

8	Multifunctional hierarchical mesoporous silica and black phosphorus nanohybrids as chemo-photothermal synergistic agents for enhanced cancer therapy. <i>Nanoscale</i> , 2020 , 12, 12578-1258	8 ^{7.7}	11
7	Application of UV/chlorine pretreatment for controlling ultrafiltration (UF) membrane fouling caused by different natural organic fractions. <i>Chemosphere</i> , 2021 , 263, 127993	8.4	11
6	Hydroxyethyl Starch-Based Nanoparticles Featured with Redox-Sensitivity and Chemo-Photothermal Therapy for Synergized Tumor Eradication. <i>Cancers</i> , 2019 , 11,	6.6	10
5	Enhanced degradation of tetrabromobisphenol A by Fe/sulfite process under simulated sunlight irradiation. <i>Chemosphere</i> , 2021 , 285, 131442	8.4	3
4	Doxorubicin-Bound Hydroxyethyl Starch Conjugate Nanoparticles with pH/Redox Responsive Linkage for Enhancing Antitumor Therapy. <i>International Journal of Nanomedicine</i> , 2021 , 16, 4527-4544	7.3	2
3	Simultaneous Removal of and 2,4,6-Trichlorophenol by UV/Persulfate Process. <i>Frontiers in Chemistry</i> , 2020 , 8, 591641	5	0
2	Dextran-polylactide micelles loaded with doxorubicin and DiR for image-guided chemo-photothermal tumor therapy. <i>International Journal of Biological Macromolecules</i> , 2021 , 187, 296	-308	O
1	Bioactive Glass Flakes as Innovative Fillers in Chitosan Membranes for Guided Bone Regeneration. Advanced Engineering Materials,2101042	3.5	O