Jakub Wiener

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5452644/publications.pdf

Version: 2024-02-01

361045 395343 1,398 76 20 33 citations h-index g-index papers 77 77 77 1288 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Review: incorporation of organic PCMs into textiles. Journal of Materials Science, 2022, 57, 798-847.	1.7	29
2	Crystallization mechanism of micro flake Cu particle-filled poly(ethylene glycol) composites. Thermochimica Acta, 2022, 710, 179172.	1.2	8
3	Hydrophobicity, water moisture transfer and breathability of PTFE-coated viscose fabrics prepared by electrospraying technology and sintering process. Progress in Organic Coatings, 2022, 165, 106775.	1.9	10
4	Surface wettability of vertical harps for fog collection. Surfaces and Interfaces, 2022, 30, 101842.	1.5	7
5	Preparation and Characterization of Electrosprayed Aerogel/Polytetrafluoroethylene Microporous Materials. Polymers, 2022, 14, 48.	2.0	O
6	Development of durable superhydrophobic and UV protective cotton fabric via TiO ₂ /trimethoxy(octadecyl)silane nanocomposite coating. Journal of the Textile Institute, 2021, 112, 1639-1650.	1.0	20
7	Structural analysis of embedding polyethylene glycol in silica aerogel. Microporous and Mesoporous Materials, 2021, 310, 110636.	2.2	26
8	Ultrasonically Assisted In Situ Deposition of ZnO Nano Particles on Cotton Fabrics for Multifunctional Textiles. Fibers and Polymers, 2021, 22, 77-86.	1.1	14
9	Utility of whiskerized carbon fabric surfaces in resistive heating of composites. Polymer Composites, 2021, 42, 2774-2786.	2.3	7
10	A Review of Impact of Textile Research on Protective Face Masks. Materials, 2021, 14, 1937.	1.3	13
11	Effect of moisture content on the electromagnetic shielding ability of non-conductive textile structures. Scientific Reports, 2021, 11, 11032.	1.6	5
12	Development of Antimicrobial Multifunctional Textiles to Avoid from Hospital-Acquired Infections. Fibers and Polymers, 2021, 22, 3055-3067.	1.1	10
13	Fabrication of Manganese Oxide/PTFE Hollow Fiber Membrane and Its Catalytic Degradation of Phenol. Materials, 2021, 14, 3651.	1.3	4
14	One Step In-Situ Synthesis of Zinc Oxide Nanoparticles for Multifunctional Cotton Fabrics. Materials, 2021, 14, 3956.	1.3	10
15	Preparation of core-sheath nanofibers with high latent heat by thermal cross-linking and coaxial electrospinning. Polymer, 2021, 228, 123958.	1.8	12
16	Thermal analysis of PEG/Metal particle-coated viscose fabric. Polymer Testing, 2021, 100, 107231.	2.3	19
17	Hydrophilization of Polyester Textiles by Nonthermal Plasma. Autex Research Journal, 2021, 21, 142-149.	0.6	10
18	Adsorption Kinetics of an Activated Carbon Glass Composite Prepared Using Acrylic Waste Through Laser Treatment. Fibres and Textiles in Eastern Europe, 2021, 29, 81-89.	0.2	0

#	Article	IF	Citations
19	Self-cleaning properties of polyester fabrics coated with flower-like TiO ₂ particles and trimethoxy (octadecyl)silane. Journal of Industrial Textiles, 2020, 50, 543-565.	1.1	24
20	Multilayer assembly for protection against laser light. Journal of the Textile Institute, 2020, 111, 226-234.	1.0	2
21	Growth of ZnO nanorods on cotton fabrics via microwave hydrothermal method: effect of size and shape of nanorods on superhydrophobic and UV-blocking properties. Cellulose, 2020, 27, 10519-10539.	2.4	30
22	Structural design of efficient fog collectors: A review. Environmental Technology and Innovation, 2020, 20, 101169.	3.0	42
23	Bio-Composites Reinforced with Natural Fibers: Comparative Analysis of Thermal, Static and Dynamic-Mechanical Properties. Fibers and Polymers, 2020, 21, 619-627.	1.1	42
24	Optimal Design of Multilayer Fog Collectors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7736-7743.	4.0	42
25	Compression resilience and impact resistance of fiberâ€reinforced sandwich composites. Polymers for Advanced Technologies, 2019, 30, 3073-3082.	1.6	5
26	Flame Retardancy, Physiological Comfort and Durability of Casein Treated Cotton Fabrics. Fibers and Polymers, 2019, 20, 1011-1020.	1.1	5
27	Flame resistance behavior of cotton fabrics coated with bilayer assemblies of ammonium polyphosphate and casein. Cellulose, 2019, 26, 3557-3574.	2.4	19
28	Effect of surface modification and knife penetration angle on the Quasi-Static Knife Penetration Resistance of para-aramid fabrics. Journal of the Textile Institute, 2019, 110, 590-599.	1.0	5
29	Comparative performance of flame retardancy, physiological comfort, and durability of cotton textiles treated with alkaline and acidic casein suspension. Journal of Industrial Textiles, 2019, 48, 969-991.	1.1	12
30	Adsorption Kinetics of Acid Red on Activated Carbon Web Prepared from Acrylic Fibrous Waste. Fibers and Polymers, 2018, 19, 71-81.	1.1	12
31	Reinforcement of enzyme hydrolyzed longer jute microcrystals in polylactic acid. Polymer Composites, 2018, 39, 1089-1097.	2.3	4
32	Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics, 2018, 83, 203-213.	2.1	37
33	In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrasonics Sonochemistry, 2018, 40, 41-56.	3.8	47
34	Development of Maghemite Glass Fibre Nanocomposite for Adsorptive Removal of Methylene Blue. Fibers and Polymers, 2018, 19, 1735-1746.	1.1	21
35	Micro-lensed polymeric optical fiber by CO2 laser cutting. Journal of Laser Applications, 2018, 30, .	0.8	3
36	Influence of Weave Design and Yarn Types on Mechanical and Surface Properties of Woven Fabric. Fibres and Textiles in Eastern Europe, 2018, 26, 42-45.	0.2	11

#	Article	IF	CITATIONS
37	Removal of methylene blue from aqueous media using activated carbon web. Journal of the Textile Institute, 2017, 108, 803-811.	1.0	24
38	3D Numerical Simulation of Laminar Flow and Conjugate Heat Transfer through Fabric. Autex Research Journal, 2017, 17, 53-60.	0.6	6
39	Ozone treatment of jute fibers. Cellulose, 2017, 24, 1543-1553.	2.4	32
40	Cationization of cellulose fibers for composites. Journal of the Textile Institute, 2017, 108, 1302-1307.	1.0	4
41	Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Composite Structures, 2017, 161, 340-349.	3.1	131
42	Investigation on laser engraving based application of silica aerogel into nonwovens. Fibers and Polymers, 2017, 18, 2469-2475.	1.1	5
43	Ozone Effect On the Properties of Aramid Fabric. Autex Research Journal, 2017, 17, 164-169.	0.6	8
44	Buffering and Antibacterial Properties of Cotton Canvas with Dolomite/ZnO-Styrene-Acrylic Complex Coating and their Comparison with Properties after the Accelerated Aging. Tekstilec, 2017, 60, 275-282.	0.3	2
45	Effect of a Superabsorbent for the Improvement of Car Seat Thermal Comfort. Fibres and Textiles in Eastern Europe, 2017, 25, 83-87.	0.2	2
46	Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydrate Polymers, 2016, 150, 107-113.	5.1	86
47	Sorption properties of iron impregnated activated carbon web for removal of methylene blue from aqueous media. Fibers and Polymers, 2016, 17, 1245-1255.	1.1	11
48	Short-term creep of barkcloth reinforced laminar epoxy composites. Composites Part B: Engineering, 2016, 103, 131-138.	5.9	9
49	Reinforcement of ozone pre-treated and enzyme hydrolyzed longer jute micro crystals in poly lactic acid composite films. Composites Part B: Engineering, 2016, 95, 9-17.	5.9	18
50	Effect of enzyme and plasma treatments of bark cloth from Ficus natalensis: morphology and thermal behavior. Journal of the Textile Institute, 2016, 107, 663-671.	1.0	4
51	Dyeing and stiffness characteristics of cellulose-coated cotton fabric. Cellulose, 2016, 23, 981-992.	2.4	17
52	Static and dynamic mechanical properties of novel treated jute/green epoxy composites. Textile Reseach Journal, 2016, 86, 960-974.	1.1	37
53	Ozonation: a Green Source for Oxidized Cotton. Fibres and Textiles in Eastern Europe, 2016, 24, 19-21.	0.2	7
54	Mechanical Properties Of Traditional And Nanofibre Textiles. Autex Research Journal, 2015, 15, 198-206.	0.6	0

#	Article	IF	CITATIONS
55	Enhancing side illumination of plastic optical fiber by using TiO2 particles and CO2 laser. Journal of Laser Applications, $2015, 27, \ldots$	0.8	3
56	Improving synthetic and natural dyeability of polyester fabrics by dielectric barrier discharge. Journal of Plastic Film and Sheeting, 2015, 31, 286-308.	1.3	33
57	Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures. Journal of the Textile Institute, 2015, 106, 736-747.	1.0	36
58	A novel method for preparing the antibacterial glass fibre mat using laser treatment. EPJ Applied Physics, 2014, 65, 20501.	0.3	1
59	Properties of cotton fabric after irradiation with infrared CO2 laser. Fibers and Polymers, 2014, 15, 2072-2076.	1.1	7
60	Langmuir isotherm models applied to the sorption of acid dyes from effluent onto polyamide nanofibers. Autex Research Journal, 2013, 13, 95-98.	0.6	6
61	Development of carboxymethyl cellulose/ polyphenols gels for textile applications. Autex Research Journal, 2013, 13, 33-36.	0.6	12
62	Properties of modified carboxymethyl cellulose prepared by lyophilisation. Autex Research Journal, 2013, 13, 79-81.	0.6	5
63	Contact angle hysteresis on plasma treated polyethylene terephthalate. E-Polymers, 2012, 12, .	1.3	1
64	Application of the laser-induced breakdown spectroscopy method in the analysis of carbon and titanium in textile structures. Textile Reseach Journal, 2012, 82, 1092-1098.	1.1	2
65	Influence of plasma sputtering treatment on natural dyeing and antibacterial activity of wool fabrics. Progress in Organic Coatings, 2011, 70, 388-393.	1.9	56
66	Decolourization of vat dyes on cotton fabric with infrared laser light. Cellulose, 2011, 18, 469-478.	2.4	27
67	Effect of Electron Irradiation on Polypropylene Films. Plasma Science and Technology, 2011, 13, 194-196.	0.7	2
68	UV protection properties of silk fabric dyed with eucalyptus leaf extract. Journal of the Textile Institute, 2011, 102, 272-279.	1.0	71
69	Dyeing and fastness properties of natural dyes extracted from eucalyptus leaves using padding techniques. Fibers and Polymers, 2010, 11, 346-350.	1.1	69
70	Surface Modification of Poly Vinyl Chloride (PVC) Using Low Pressure Argon and Oxygen Plasma. Plasma Science and Technology, 2010, 12, 204-207.	0.7	15
71	Dyeing of Wool and Silk by Eucalyptus Leaves Extract. Journal of Natural Fibers, 2009, 6, 319-330.	1.7	22
72	LIBS analysis of chromium in samples of dyed wool fabric. Journal of Analytical Atomic Spectrometry, 2009, 24, 685.	1.6	14

#	Article	IF	CITATION
73	Natural Dye from Eucalyptus Leaves and Application for Wool Fabric Dyeing by Using Padding Techniques. , 0, , .		18
74	Antibacterial Agents in Textile Industry., 0,,.		26
75	Development of Photocatalytic Self-Cleaning Cotton Fabric. Materials Science Forum, 0, 866, 171-175.	0.3	1
76	Antibacterial easy adjustable woven compression bandage for venous leg ulcers. Journal of Industrial Textiles, 0, , 152808372210952.	1.1	1