
Xibin Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5452617/publications.pdf Version: 2024-02-01

XIRIN ZHOU

#	Article	IF	CITATIONS
1	Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Analytica Chimica Acta, 2014, 823, 32-39.	2.6	169
2	Au-Pt bimetallic nanoparticles decorated on sulfonated nitrogen sulfur co-doped graphene for simultaneous determination of dopamine and uric acid. Talanta, 2018, 178, 315-323.	2.9	56
3	Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite. Talanta, 2016, 161, 713-720.	2.9	54
4	Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence. Talanta, 2015, 142, 228-234.	2.9	53
5	Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst. Chinese Chemical Letters, 2019, 30, 1253-1260.	4.8	46
6	Simultaneous determination of dihydroxybenzene isomers based on graphene-graphene oxide nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2014, 193, 198-204.	4.0	43
7	Simultaneous determination of uric acid, xanthine and hypoxanthine based on sulfonic groups functionalized nitrogen-doped graphene. Journal of Electroanalytical Chemistry, 2015, 756, 22-29.	1.9	34
8	Tree-Like NiS2/MoS2-RGO Nanocomposites as pH Universal Electrocatalysts for Hydrogen Evolution Reaction. Catalysis Letters, 2019, 149, 1197-1210.	1.4	33
9	Simply converting color signal readout into thermal signal readout for breaking the color resolution limitation of colorimetric sensor. Sensors and Actuators B: Chemical, 2020, 309, 127707.	4.0	29
10	PtNi nanoparticles supported on electrochemically reduced porous graphene oxide for methanol oxidation reaction. Chemical Physics Letters, 2019, 730, 575-581.	1.2	28
11	Facile synthesis of MoS2/N-doped macro-mesoporous carbon hybrid as efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2018, 43, 7326-7337.	3.8	23
12	Synthesis of Au@nitrogen-doped carbon quantum dots@Pt core-shell structure nanoparticles for enhanced methanol electrooxidation. Journal of Alloys and Compounds, 2019, 793, 635-645.	2.8	23
13	Pt Pd nanoparticles supported on sulfonated nitrogen sulfur co-doped graphene for methanol electro-oxidation. International Journal of Hydrogen Energy, 2018, 43, 15931-15940.	3.8	20
14	Electrodeposition of platinum nanoparticles on polypyrrole-functionalized graphene. Journal of Materials Science, 2013, 48, 2566-2573.	1.7	19
15	A green approach for assembling graphene films on different carbon-based substrates and their electrocatalysis toward nitrite. RSC Advances, 2015, 5, 36707-36714.	1.7	16
16	A Novel Sensitive Electrochemical Sensor for the Simultaneous Determination of Hydroquinone and Catechol using Tryptophan-Functionalized Graphene. Analytical Letters, 2015, 48, 1426-1436.	1.0	15
17	Phase transformation-controlled synthesis of CuO nanostructures and their application as an improved material in a carbon-based modified electrode. RSC Advances, 2016, 6, 12829-12836.	1.7	12
18	Simple synthesis of the Au-GQDs@AgPt Yolk-shell nanostructures electrocatalyst for enhancing the methanol oxidation. Journal of Alloys and Compounds, 2020, 834, 155056.	2.8	12

XIBIN ZHOU

#	Article	IF	CITATIONS
19	Synthesis of three-dimensional Au-graphene quantum dots@Pt core–shell dendritic nanoparticles for enhanced methanol electro-oxidation. Nanotechnology, 2019, 30, 495706.	1.3	11
20	Controllable Electrodeposition of Platinum Nanoparticles on Graphene Nanosheet for Methanol Oxidation Reaction. Journal of Cluster Science, 2013, 24, 739-748.	1.7	6
21	Photothermometric analysis of bismuth ions using aggregation-induced nanozyme system with a target-triggered surface cleaning effect. Analytical and Bioanalytical Chemistry, 2021, 413, 3655-3665.	1.9	6
22	Facile synthesis of AgPt nano-pompons for efficient methanol oxidation: Morphology control and DFT study on stability enhancement. Journal of Industrial and Engineering Chemistry, 2022, 108, 456-465.	2.9	6
23	A Novel Method to Remove Self-Assembled Monolayer of Porphyrin from the Gold Surface by Cyclic Voltammetry. Journal of Adhesion Science and Technology, 2012, 26, 1521-1529.	1.4	1