Guy Della Valle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/545238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rheological properties of artificial boluses of cereal foods enriched with legume proteins. Food Hydrocolloids, 2022, 122, 107096.	5.6	8
2	Guiding the formulation of soft cereal foods for the elderly population through food oral processing: Challenges and opportunities. Advances in Food and Nutrition Research, 2022, , .	1.5	0
3	Variations of the viscous properties of a sponge cake artificial bolus with some physiological parameters. Food and Function, 2022, 13, 3198-3205.	2.1	0
4	Extrusion Simulation for the Design of Cereal and Legume Foods. Foods, 2022, 11, 1780.	1.9	4
5	Artificial Oral Processing of Extruded Pea Flour Snacks. Food Engineering Reviews, 2021, 13, 247-261.	3.1	7
6	A digital learning tool based on models and simulators for food engineering (MESTRAL). Journal of Food Engineering, 2021, 293, 110375.	2.7	6
7	Influence of ionic plasticizers on the processing and viscosity of starch melts. Carbohydrate Polymers, 2020, 230, 115591.	5.1	20
8	Rheological and microstructural characterization of batters and sponge cakes fortified with pea proteins. Food Hydrocolloids, 2020, 101, 105553.	5.6	27
9	Impact de l'incorporation en protéines de légumineuses (pois et fÃ [~] ve) dans des produits céréaliers (brioche et génoise) à destination de personnes âgées sur la transformation orale et la digestibilité in vitro des protéines. Cahiers De Nutrition Et De Dietetique, 2020, 55, 317-324.	0.2	2
10	Oral processing and comfort perception of soft cereal foods fortified with pulse proteins in the elderly with different oral health status. Food and Function, 2020, 11, 4535-4547.	2.1	14
11	Impact of protein reinforcement on the deformation of soft cereal foods under chewing conditions studied by X-ray tomography and finite element modelling. Journal of Food Engineering, 2020, 286, 110108.	2.7	9
12	Morphology and mechanical behaviour of pea-based starch-protein composites obtained by extrusion. Carbohydrate Polymers, 2019, 223, 115086.	5.1	35
13	Role of the bolus degree of structure on the protein digestibility during in vitro digestion of a pea proteinâ€fortified sponge cake chewed by elderly. Journal of Texture Studies, 2019, 51, 134-143.	1.1	17
14	Viscous sintering kinetics of biopolymer filaments extruded for 3D printing. Polymer Testing, 2019, 77, 105873.	2.3	15
15	Validation and use for product optimization of a phenomenological model of starch foods expansion by extrusion. Journal of Food Engineering, 2019, 246, 160-178.	2.7	16
16	Fragmentation of two soft cereal products during oral processing in the elderly: Impact of product properties and oral health status. Food Hydrocolloids, 2019, 91, 153-165.	5.6	24
17	Relationships of oral comfort perception and bolus properties in the elderly with salivary flow rate and oral health status for two soft cereal foods. Food Research International, 2019, 118, 13-21.	2.9	34
18	The effect of organic wheat flour by-products on sourdough performances assessed by a multi-criteria approach. Food Research International, 2018, 106, 974-981.	2.9	25

How does temperature govern mechanisms of starch changes during extrusion?. Carbohydrate 5.1 Polymers, 2018, 184, 57-65.	30 54
	54
20Material extrusion of plant biopolymers: Opportunities & amp; challenges for 3D printing. Additive Manufacturing, 2018, 21, 220-233.1.7	
Multi-scale structural changes of starch and proteins during pea flour extrusion. Food Research International, 2018, 108, 203-215.	61
The virtual food system: Innovative models and experiential feedback in technologies for winemaking,22the cereals chain, food packaging and eco-designed starter production. Innovative Food Science and2.7Emerging Technologies, 2018, 46, 54-64.2.7	19
Processing & rheological properties of wheat flour dough and bread containing high levels of soluble dietary fibres blends. Food Research International, 2017, 97, 123-132.	29
Cellular structure and rheological properties of shaped fermented wheat flour dough. Journal of Cereal Science, 2017, 73, 91-98.	5
Rheology and structural changes of plasticized zeins in the molten state. Rheologica Acta, 2017, 56, 941-953.	12
Thermomechanical characterization of an amylose-free starch extracted from cassava (Manihot) Tj ETQq0 0 0 rgBT $\frac{1}{5.1}$ Qverlog	ck 10 Tf 50 4
Linear viscoelastic properties of extruded amorphous potato starch as a function of temperature and moisture content. Rheologica Acta, 2016, 55, 597-611.	7
28 Destructuration mechanisms of bread enriched with fibers during mastication. Food Research 2.9 International, 2016, 80, 1-11.	33
Modeling of starchy melts expansion by extrusion. Trends in Food Science and Technology, 2016, 48, 7.8 13-26.	41
 Elongational properties and proofing behaviour of wheat flour dough. Journal of Food Engineering, 2016, 168, 129-136. 	24
Rheological properties of wheat flour dough and French bread enriched with wheat bran. Journal of Cereal Science, 2015, 65, 167-174.	54
Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough. Soft Matter, 2015, 11, 3373-3384.	40
Flow and foam properties of extruded maize flour and its biopolymer blends expanded by microwave. 2.9 Food Research International, 2015, 76, 567-575.	14
Foaming and rheological properties of the liquid phase extracted fromÂwheat flour dough. Food Hydrocolloids, 2015, 43, 114-124.	23
How can technology help to deliver more of grain in cereal foods for a healthy diet?. Journal of Cereal Science, 2014, 59, 327-336.	97

³⁶Predicting the quality of wheat flour dough at mixing using an expert system. Food Research2.91536International, 2014, 64, 772-782.15

#	Article	IF	CITATIONS
37	Determining the Cellular Structure of Two Cereal Food Foams by X-ray Micro-Tomography. Food Biophysics, 2014, 9, 219.	1.4	20
38	Basic knowledge models for the design of bread texture. Trends in Food Science and Technology, 2014, 36, 5-14.	7.8	31
39	Experimental investigation and discrete simulation of fragmentation in expanded breakfast cereals. Food Research International, 2014, 55, 28-36.	2.9	16
40	Assessment of French bread texture by a multi-indentation test. Journal of Food Engineering, 2014, 122, 92-98.	2.7	5
41	Modelling Wheat Flour Dough Proofing Behaviour: Effects of Mixing Conditions on Porosity and Stability. Food and Bioprocess Technology, 2013, 6, 2150-2164.	2.6	18
42	Preliminary analysis of mastication dynamics and fragmentation during chewing of brittle cereal foods. Food Research International, 2013, 54, 1455-1462.	2.9	13
43	Estimation of energy saving thanks to a reduced-model-based approach: Example of bread baking by jet impingement. Energy, 2013, 53, 74-82.	4.5	9
44	Physical assessment of bread destructuration during chewing. Food Research International, 2013, 50, 308-317.	2.9	58
45	A new method for dynamic modelling of bread dough kneading based on artificial neural network. Food Control, 2012, 26, 512-524.	2.8	20
46	Kinetics of crust formation during conventional French bread baking. Journal of Cereal Science, 2012, 56, 440-444.	1.8	21
47	Kinetics of bubble growth in wheat flour dough during proofing studied by computed X-ray micro-tomography. Journal of Cereal Science, 2012, 56, 676-683.	1.8	58
48	Simulation of bread making process using a direct 3D numerical method at microscale: analysis of baking step. International Journal of Material Forming, 2012, 5, 11-24.	0.9	11
49	Application of the Discrete Element Method to crack propagation and crack branching in a vitreous dense biopolymer material. International Journal of Solids and Structures, 2012, 49, 1893-1899.	1.3	27
50	Energetical and rheological approaches of wheat flour dough mixing with a spiral mixer. Journal of Food Engineering, 2012, 110, 60-70.	2.7	30
51	Mechanical modelling of cereal solid foods. Trends in Food Science and Technology, 2011, 22, 142-153.	7.8	62
52	How cracks propagate in a vitreous dense biopolymer material. Engineering Fracture Mechanics, 2011, 78, 1328-1340.	2.0	13
53	Finite element modelling of crack propagation in carbohydrate extruded starch with open void structure. Carbohydrate Polymers, 2011, 83, 1696-1706.	5.1	16
54	The role of mechanical properties of brittle airy foods on the masticatory performance. Journal of Food Engineering, 2010, 101, 85-91.	2.7	39

#	Article	IF	CITATIONS
55	Dough/crumb transition during French bread baking. Journal of Cereal Science, 2010, 52, 161-169.	1.8	44
56	Effect of wheat dietary fibres on bread dough development and rheological properties. Journal of Cereal Science, 2010, 52, 200-206.	1.8	97
57	Extrusion, structure and mechanical properties of complex starchy foams. Journal of Food Engineering, 2010, 98, 19-27.	2.7	54
58	Porosity and stability of bread dough during proofing determined by video image analysis for different compositions and mixing conditions. Food Research International, 2010, 43, 1999-2005.	2.9	45
59	Shear and elongational viscosities of a complex starchy formulation for extrusion cooking. Food Research International, 2010, 43, 2093-2100.	2.9	25
60	Generation of Anisotropic Cellular Solid Model and Related Elasticity Parameters: Finite Element Simulation. Journal of Cellular Plastics, 2009, 45, 119-136.	1.2	13
61	Thermal Characterization and Phase Behavior of a Ready-to-Eat Breakfast Cereal Formulation and its Starchy Components. Food Biophysics, 2009, 4, 291-303.	1.4	25
62	Qualitative modelling of a multi-step process: The case of French breadmaking. Expert Systems With Applications, 2009, 36, 1020-1038.	4.4	26
63	Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA. Carbohydrate Polymers, 2009, 76, 528-534.	5.1	47
64	Permeability and Expanded Structure of Baked Products Crumbs. Food Biophysics, 2008, 3, 344-351.	1.4	18
65	Simulation of bread making process using a direct 3D numerical method at microscale: Analysis of foaming phase during proofing. Journal of Food Engineering, 2008, 85, 259-267.	2.7	27
66	Relating cellular structure of open solid food foams to their Young's modulus: Finite element calculation. International Journal of Solids and Structures, 2008, 45, 2881-2896.	1.3	66
67	BULK MECHANICAL BEHAVIOR OF COMMERCIAL PARTICLE FOOD FOAMS. Journal of Texture Studies, 2008, 39, 405-425.	1.1	13
68	Viscous Properties of Thermoplastic Starches from Different Botanical Origin. International Polymer Processing, 2007, 22, 471-479.	0.3	35
69	Relationships between texture, mechanical properties and structure of cornflakes. Food Research International, 2007, 40, 493-503.	2.9	63
70	Granulometry of bread crumb grain: Contributions of 2D and 3D image analysis at different scale. Food Research International, 2007, 40, 1087-1097.	2.9	75
71	Mechanical behaviour of corn flour and starch–zein based materials in the glassy state: A matrix–particle interpretation. Carbohydrate Polymers, 2006, 65, 346-356.	5.1	58
72	Fast X-ray tomography analysis of bubble growth and foam setting during breadmaking. Journal of Cereal Science, 2006, 43, 393-397.	1.8	162

#	Article	IF	CITATIONS
73	Structure and mechanical behaviour of corn flour and starch–zein based materials in the glassy state. Carbohydrate Polymers, 2005, 59, 109-119.	5.1	99
74	PHYSICAL AND SENSORY EVALUATION OF CORNFLAKES CRISPNESS. Journal of Texture Studies, 2005, 36, 93-118.	1.1	54
75	Shear and extensional properties of bread doughs affected by their minor components. Journal of Cereal Science, 2005, 42, 45-57.	1.8	125
76	An instrumented pilot scale oven for the study of French bread baking. Journal of Food Engineering, 2005, 69, 97-106.	2.7	53
77	Mechanical properties of bread crumbs from tomography based Finite Element simulations. Journal of Materials Science, 2005, 40, 5867-5873.	1.7	59
78	Evaluation of starch-PE multilayers: Processing and properties. Polymer Engineering and Science, 2005, 45, 217-224.	1.5	26
79	Effect of Flour Minor Components on Bubble Growth in Bread Dough during Proofing Assessed by Magnetic Resonance Imaging. Journal of Agricultural and Food Chemistry, 2005, 53, 3986-3994.	2.4	39
80	French Bread Loaf Volume Variations and Digital Image Analysis of Crumb Grain Changes Induced by the Minor Components of Wheat Flour. Cereal Chemistry, 2005, 82, 20-27.	1.1	56
81	Dynamic magnetic resonance microscopy of flour dough fermentation. Magnetic Resonance Imaging, 2004, 22, 395-401.	1.0	28
82	In-line determination of plasticized wheat starch viscoelastic behavior: impact of processing. Carbohydrate Polymers, 2003, 53, 169-182.	5.1	69
83	Energy Balance of Low Hydrated Starches Transition Under Shear. Journal of Food Science, 2002, 67, 1426-1437.	1.5	28
84	Structural and Chemical Modifications of Short Dough During Baking. Journal of Cereal Science, 2002, 35, 1-10.	1.8	98
85	Relationship between thermomechanical properties and baking expansion of sour cassava starch (Polvilho azedo). Journal of the Science of Food and Agriculture, 2001, 81, 429-435.	1.7	27
86	Microscopical Study of the Destructuring of Waxy Maize and Smooth Pea Starches by Shear and Heat at Low Hydration. Journal of Cereal Science, 2001, 33, 289-300.	1.8	57
87	Structural modifications of low hydrated pea starch subjected to high thermomechanical processing. Carbohydrate Polymers, 2000, 43, 171-181.	5.1	48
88	Contribution of Major Ingredients during Baking of Biscuit Dough Systems. Journal of Cereal Science, 2000, 31, 241-252.	1.8	135
89	Physicochemical Behaviors of Sugars, Lipids, and Gluten in Short Dough and Biscuit. Journal of Agricultural and Food Chemistry, 2000, 48, 1322-1326.	2.4	111
90	A global computer software for polymer flows in corotating twin screw extruders. Polymer Engineering and Science, 1998, 38, 1781-1792.	1.5	199

#	Article	IF	CITATIONS
91	Influence of amylose content on the viscous behavior of low hydrated molten starches. Journal of Rheology, 1996, 40, 347-362.	1.3	121
92	Influence of amylose content on starch films and foams. Carbohydrate Polymers, 1995, 27, 261-270.	5.1	291
93	The extrusion behaviour of potato starch. Carbohydrate Polymers, 1995, 28, 255-264.	5.1	98
94	Relationships between processing conditions and starch and protein modifications during extrusion-cooking of pea flour. Journal of the Science of Food and Agriculture, 1994, 64, 509-517.	1.7	53
95	Raw and extruded fibre from pea hulls. Part I: Composition and physico-chemical properties. Carbohydrate Polymers, 1993, 20, 17-23.	5.1	124
96	A specific slit die rheometer for extruded starchy products. Design, validation and application to maize starch. Rheologica Acta, 1993, 32, 465-476.	1.1	75
97	Computer simulation of starchy products' transformation by twin-screw extrusion. Journal of Food Engineering, 1993, 19, 1-31.	2.7	52
98	Influence of extrusion-cooking on the physico-chemical properties of wheat bran. Journal of Cereal Science, 1990, 11, 249-259.	1.8	122
99	A Basic Model for a Twin-Screw Extruder. Journal of Food Science, 1989, 54, 1047-1056.	1.5	45
100	Theoretical Computation of the Isothermal Flow Through the Reverse Screw Element of a Twin Screw Extrusion Cooker. Journal of Food Science, 1988, 53, 616-625.	1.5	41
101	Relationship of extrusion variables with pressure and temperature during twin screw extrusion cooking of starch, Journal of Food Engineering, 1987, 6, 423-444	2.7	74