Ritu Kataky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5452323/publications.pdf

Version: 2024-02-01

91 2,067 26 41 papers citations h-index g-index

94 94 94 2491 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Real time monitoring of interactions of gold nanoparticles with supported phospholipid lipid layers. Journal of Electroanalytical Chemistry, 2020, 872, 114302.	3.8	5
2	Silver nanoparticle impacts on gold electrode surfaces in flow-injection configuration. Sensors and Actuators B: Chemical, 2019, 290, 140-146.	7.8	7
3	Biofilm formation on abiotic surfaces and their redox activity. Current Opinion in Electrochemistry, 2018, 12, 121-128.	4.8	20
4	â€~Soft' electroactive particles and their interaction with lipid membranes. Electrochemistry Communications, 2017, 77, 65-70.	4.7	0
5	New Blatter-type radicals from a bench-stable carbene. Nature Communications, 2017, 8, 15088.	12.8	36
6	Emulsification at the Liquid/Liquid Interface: Effects of Potential, Electrolytes and Surfactants. ChemPhysChem, 2016, 17, 105-111.	2.1	6
7	Graphene oxide nanocapsules within silanized hydrogels suitable for electrochemical pseudocapacitors. Chemical Communications, 2015, 51, 10345-10348.	4.1	2
8	A microgripper sensor device capable of detecting ion efflux from whole cells. RSC Advances, 2014, 4, 50536-50541.	3.6	2
9	Platinum(II) Complexes of N ^{â^\$} C ^{â^\$} N-Coordinating 1,3-Bis(2-pyridyl)benzene Ligands: Thiolate Coligands Lead to Strong Red Luminescence from Charge-Transfer States. Inorganic Chemistry, 2014, 53, 5738-5749.	4.0	64
10	Modification of Electrode Surfaces by Selfâ€Assembled Monolayers of Thiolâ€Terminated Oligo(Phenyleneethynylene)s. ChemPhysChem, 2013, 14, 431-440.	2.1	21
11	A Multifunctional Microgripper Capable of Simultaneous Single Cell Manipulation and Associated Ion Sensing. Materials Research Society Symposia Proceedings, 2012, 1463, 7.	0.1	0
12	Chiral Interactions of the Drug Propranolol and α ₁ -Acid-Glycoprotein at a Micro Liquid–Liquid Interface. Analytical Chemistry, 2012, 84, 2299-2304.	6.5	39
13	Non-invasive monitoring of temperature stress in Arabidopsis thaliana roots, using ion amperometry. Analytical Methods, 2012, 4, 1656.	2.7	6
14	Chiral acid selectivity displayed by PEDOT electropolymerised in the presence of chiral molecules. Analyst, The, 2012, 137, 2386.	3.5	19
15	Electron Transport in Supported and Tethered Lipid Bilayers Modified with Bioelectroactive Molecules. Journal of Physical Chemistry B, 2012, 116, 3909-3917.	2.6	17
16	Application of Iron Bathophenanthroline Complex as a Redox Mediating Agent for Imaging Surface Immobilized DNA Using Scanning Electrochemical Microscopy. Sensor Letters, 2012, 10, 856-865.	0.4	1
17	Liposome-doped hydrogel for implantable tissue. Soft Matter, 2011, 7, 7071.	2.7	23
18	A thermally actuated microgripper as an electrochemical sensor with the ability to manipulate single cells. Chemical Communications, 2011, 47, 6446.	4.1	17

#	Article	lF	Citations
19	Microelectrode arrays for electroanalytical sensing: Comparison of electroplating and electron-beam metallisation. Electrochemistry Communications, 2011, 13, 414-417.	4.7	7
20	Effect of Monomer Modifications on the Physical Properties of Electropolymerised PEDOT Films. Journal of the Electrochemical Society, 2011, 159, F1-F9.	2.9	17
21	Microelectrode Array Supported by Microfluidic Channel for High-Throughput Sensing: Fabrication and Characterization. ECS Transactions, 2010, 33, 221-227.	0.5	0
22	Characterization of the porous nature of a phthalocyanine derivative with axial ligation designed to prevent aggregation. Journal of Porphyrins and Phthalocyanines, 2010, 14, 389-396.	0.8	1
23	Transport Properties of Aqueous Solutions of $(1 < i > R < i > , 2 < i > S < i >)$ - (\hat{a}°)- and $(1 < i > S < i > , 2 < i > R < i >)$ -($i > , 2 < i > R < i >)$ -($i > , 2 < i > R < i >)$ -($i > , 2 < i > R < i >)$ -($i > , 2 < i > R < i >)$ -($i > , 2 < i > R < i >)$ -($i > , 2 < i > R < i >)$ -($i > , 2 < i > R < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -($i > , 2 < i >)$ -(1.9	10
24	Comparative electrochemical and impedance studies of self-assembled rigid-rod molecular wires and alkanethiols on gold substrates. Physical Chemistry Chemical Physics, 2010, 12, 14804.	2.8	15
25	Modification of the chiral selectivity of d-glucose oxidase and l-lactate oxidase in a collagen matrix. Physical Chemistry Chemical Physics, 2010, 12, 9183.	2.8	6
26	Chiral resolution of R and S 1-phenylethanol on glassy carbon electrodes. Journal of Electroanalytical Chemistry, 2009, 633, 57-62.	3.8	3
27	Complexation Studies of Pyridyl Sulfonamide Ligands forÂSensing Zinc and Copper Ions. Journal of Solution Chemistry, 2009, 38, 1483-1492.	1.2	1
28	Chiral detection at a liquid–liquid interface. Chemical Communications, 2009, , 1490.	4.1	11
29	Synthesis of Biodegradable Materials and Chemical Sensors Via Romp. NATO Science for Peace and Security Series A: Chemistry and Biology, 2009, , 263-277.	0.5	1
30	A gramicidin analogue that exhibits redox potential-dependent cation influx. Sensors and Actuators B: Chemical, 2008, 130, 630-637.	7.8	1
31	Enantioselectivity of potentiometric sensors with application of different mechanisms of chiral discrimination. Journal of Proteomics, 2008, 70, 1261-1267.	2.4	17
32	Towards multifunctional microelectrode arrays. Analyst, The, 2008, 133, 1060.	3 . 5	4
33	Spectroscopic and electrochemical properties of 4-[(4′-hydroxy-3′,5′-dimethylphenyl)(aryl)-methylene]-2,6-dimethylcyclohexa-2,5-dienones. Dyes and Pigments, 2007, 74, 88-94.	3.7	8
34	Emulsion-templated porous materials (PolyHIPEs) for selective ion and molecular recognition and transport: applications in electrochemical sensing. Journal of Materials Chemistry, 2007, 17, 2446.	6.7	145
35	The Effect of a Hydrogen Bonding Environment (Dimethyl Sulfoxide) on the Ionisation and Redox Properties of the Thiol Group in Cysteine and a Protein Disulfide Isomerase Mimic (Vectrase). Journal of Solution Chemistry, 2007, 36, 517-529.	1.2	5
36	An introduction to thiol redox proteins in the endoplasmic reticulum and a review of current electrochemical methods of detection of thiols. Analyst, The, 2006, 131, 459.	3.5	39

#	Article	IF	CITATIONS
37	Structural investigations on Quinone Methides for understanding their properties in confined media. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 55, 1-9.	1.6	4
38	Recommendation for measuring and reporting chloride by ISEs in undiluted serum, plasma or blood: International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division, Committee on Point of Care Testing and Working Group on Selective Electrodes. Clinical Chemistry and Laboratory Medicine, 2006, 44, 346-52.	2.3	21
39	Mutations in the FAD Binding Domain Cause Stress-induced Misoxidation of the Endoplasmic Reticulum Oxidoreductase Ero1^2 . Journal of Biological Chemistry, 2006, 281, 25018-25025.	3.4	6
40	Modular assembly of a preorganised, ditopic receptor for dicarboxylates. Chemical Communications, 2006, , 156-158.	4.1	35
41	Porous Polymers by Emulsion Templating. Macromolecular Symposia, 2005, 226, 203-212.	0.7	28
42	Tissue-specific Expression and Dimerization of the Endoplasmic Reticulum Oxidoreductase $\text{Erol}\hat{l}^2$. Journal of Biological Chemistry, 2005, 280, 33066-33075.	3.4	78
43	Individually addressable recessed gold microelectrode arrays with monolayers of thio-cyclodextrin nanocavities. Analyst, The, 2005, 130, 1351.	3.5	10
44	Capillary electrophoresis speciation of chromium in leather tanning liquor. Electrophoresis, 2003, 24, 2259-2263.	2.4	13
45	Potential of enzyme mimics in biomimetic sensors: a modified-cyclodextrin as a dehydrogenase enzyme mimic. Biosensors and Bioelectronics, 2003, 18, 1407-1417.	10.1	49
46	Examination of cobalt, nickel, copper and zinc(ii) complex geometry and binding affinity in aqueous media using simple pyridylsulfonamide ligandsElectronic supplementary information (ESI) available: experimental details for $[M(L2)2]$, $[M(L3)2]$ and $[M(L4)2]$ (Mae^{-} = ae^{-} =	2.8	24
47	Synthesis, characterisation and application of lanthanide cyclen complexes in organic synthesis. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 932-937.	1.3	15
48	Solâ€"gel-immobilised terbium complexes for luminescent sensing of dissolved oxygen by analysis of emission decayElectronic supplementary information (ESI) available: examples of the analysis of the emission decay data for calibration purposes and examples of data sets and their treatment at different delay times. See http://www.rsc.org/suppdata/nj/b1/b110743g/. New Journal of Chemistry, 2002, 26, 530-535.	2.8	43
49	Narrow-Range Optical pH Sensors Based on Luminescent Europium and Terbium Complexes Immobilized in a Sol Gel Glass. Inorganic Chemistry, 2001, 40, 5860-5867.	4.0	93
50	Cyclodextrin-modified biosensors: comparision of cyclodextrin-linked ferrocenes as mediators in solââ,¬â€œgel and screen-printed formats for sensing acetylcholine. Analyst, The, 2001, 126, 2015-2019.	3.5	12
51	Investigation of mechanisms for the reductive dechlorination of chlorinated ethylenes using electroanalytical techniques. Analyst, The, 2001, 126, 1901-1906.	3.5	3
52	pH Standardization of 0.05 mol·kg-1Tetraoxalate Buffer:  Application of the Pitzer Formalism. Journal of Chemical & C	1.9	4
53	lonophores based on 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) as potentiometric silver sensors. Analyst, The, 2000, 125, 861-866.	3.5	26
54	Solution complexation behaviour of 1,3,5-trioxycyclohexane based ligands and their evaluation as ionophores for Group IA/IIA metal cations. Perkin Transactions II RSC, 2000, , 623-630.	1.1	3

#	Article	IF	CITATIONS
55	Determination of silver in photographic emulsion: comparison of traditional solid-state electrodes and a new ion-selective membrane electrode. Analyst, The, 2000, 125, 1447-1451.	3.5	7
56	A tetrathiafulvalene derivative with an acyclic S4 domain as a voltammetric silver sensor. Perkin Transactions II RSC, 2000, , 189-190.	1.1	22
57	A rotaxane of a 1,1′-disubstituted ferrocene and β-cyclodextrin. New Journal of Chemistry, 2000, 24, 265-268.	2.8	26
58	A study of the effect of proteins and endogenous cations on a lipophilic β-cyclodextrin-based potentiometric lidocaine sensor using discrete solution and flow-injection analysis. Talanta, 1999, 50, 939-946.	5.5	7
59	Dependence of the relaxivity and luminescence of gadolinium and europium amino-acid complexes on hydrogencarbonate and pH. Chemical Communications, 1999, , 1047-1048.	4.1	71
60	Enantiomer discrimination using lipophilic cyclodextrins studied by electrode response, pulsed-gradient spin-echo (PGSE) NMR and relaxation rate measurements. Journal of the Chemical Society Perkin Transactions II, 1998, , 19-24.	0.9	19
61	Selective complexation and sensitive analysis of charge diffuse cationic species using lipophilic cyclodextrins. Chemical Communications, 1997, , 141-146.	4.1	11
62	Alkylated cyclodextrin-based potentiometric and amperometric electrodes applied to the measurement of tricyclic antidepressants. Electroanalysis, 1997, 9, 1267-1272.	2.9	29
63	Sensitive and specific electrochemical sensors for charge-diffuse cations: use of lipophilic cyclodextrins and an enzyme relay for the determination of acetylcholine. Analyst, The, 1996, 121, 1829.	3.5	22
64	Synthesis and solution complexation behaviour of tetradentate diamines with hard phosphinate donors. Journal of the Chemical Society Dalton Transactions, 1996, , 2693.	1.1	7
65	Selectivity in the binding and detection of charge diffuse ions. Pure and Applied Chemistry, 1996, 68, 1219-1223.	1.9	18
66	Local anesthetics measured by lipophilic \hat{l}^2 -cyclodextrin-based ion-selective electrodes. Electroanalysis, 1996, 8, 585-590.	2.9	13
67	Potentiometric, enantioselective sensors for alkyl and aryl ammonium ions of pharmaceutical significance, based on lipophilic cyclodextrins. Scandinavian Journal of Clinical and Laboratory Investigation, 1995, 55, 409-419.	1.2	36
68	Monolayer and Multilayer Films of Cyclodextrins Substituted with Two and Three Alkyl Chains. Langmuir, 1995, 11, 3997-4000.	3.5	41
69	Lithium selective ionophores based on pendant arm substituted crown ethers. Journal of the Chemical Society Perkin Transactions II, 1995, , 1761.	0.9	17
70	Selective sensing of guanidinium and tetraalkylammonium ions using lipophilic cyclodextrins. Journal of the Chemical Society Perkin Transactions II, 1995, , 1955.	0.9	13
71	Chiral sensors based on lipophilic cyclodextrins: interrogation of enantioselectivity by combined NMR, structural correlation and electrode response studies. Journal of the Chemical Society Perkin Transactions II, 1994, , 669.	0.9	18
72	Selective binding and sensing of guanidinium ions by lipophilic cyclodextrins. Journal of the Chemical Society Perkin Transactions II, 1994, , 2381.	0.9	10

#	Article	IF	Citations
73	Functionalized cyclodextrins as potentiometric sensors for onium ions. Analyst, The, 1994, 119, 181.	3.5	36
74	Comparative study of tripodal oxa-amides and oxa-esters as ionophores in potentiometric ion-selective electrodes for alkali and alkaline earth cations. Analytica Chimica Acta, 1993, 276, 353-360.	5.4	11
75	Calibration solutions for the simultaneous potentiometric measurement of sodium, potassium and calcium in blood plasma: examination of the electrochemical factors affecting precision and accuracy in direct potentiometric clinical analysers. Journal of the Chemical Society, Faraday Transactions, 1993. 89. 369.	1.7	4
76	Selective binding and detection of onium ions by lipophilic neutral cyclodextrins. Journal of the Chemical Society Chemical Communications, 1993, , 691.	2.0	14
77	Functionalized α-cyclodextrins as potentiometric chiral sensors. Analyst, The, 1992, 117, 1313-1317.	3.5	34
78	Binding properties of amide and amide–ester N-functionalised polyaza macrocycles. Journal of the Chemical Society Perkin Transactions II, 1992, , 1347-1351.	0.9	10
79	A chiral sensor based on a peroctylated \hat{l}_{\pm} -cyclodextrin. Journal of the Chemical Society Chemical Communications, 1992, , 153-155.	2.0	14
80	Structure and solution stability of indium and gallium complexes of 1,4,7-triazacyclononanetriacetate and of yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligands: kinetically stable complexes for use in imaging and radioimmunotherapy. X-Ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid. Journal of the	0.9	135
81	Chemical Society Perkin Transactions II, 1991, , 87. Comparative performance of 14-crown-4 derivatives as lithium-selective electrodes. Analyst, The, 1991, 116, 135.	3.5	51
82	Towards tumour targeting with copper-radiolabelled macrocycle–antibody conjugates: synthesis, antibody linkage, and complexation behaviour. Journal of the Chemical Society Perkin Transactions II, 1990, , 573-585.	0.9	36
83	Synthesis of 1,10-dithia-4,7,13,16-tetra-azacyclo-octadecane, 1-aza-4,7-dithiacyclononane, and N,Nâ \in 2-1,2-bis(1-aza-4,7-dithia-cyclononyl)ethane. Structural and solution studies of their silver complexes. Journal of the Chemical Society Perkin Transactions II, 1990, , 1523-1531.	0.9	48
84	Synthesis and binding properties of amide-functionalised polyaza macrocycles. Journal of the Chemical Society Perkin Transactions II, 1990, , 1425.	0.9	31
85	Synthesis and complexation behaviour of an effective octadentate complexone 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakis[methylene(methylphosphinic acid)]. Journal of the Chemical Society Chemical Communications, 1990, , 1739.	2.0	18
86	Synthesis and complex stability of parent and C-functionalised derivatives of 1,4,7-triazacyclononane-1,4,7-tris[methylene(methylphosphinic acid)]: an effective new complexing agent. Journal of the Chemical Society Chemical Communications, 1990, , 1738.	2.0	26
87	Comparative study of mono- and di-substituted 14-crown-4 derivatives as lithium ionophores. Journal of the Chemical Society Perkin Transactions II, 1990, , 321.	0.9	28
88	Synthesis and binding properties of lithium-selective [14]-O4 macrocycles and their use in a lithium ion-selective electrode. Tetrahedron Letters, 1989, 30, 4559-4562.	1.4	12
89	Synthesis of a kinetically stable yttrium-90 labelled macrocycle–antibody conjugate. Journal of the Chemical Society Chemical Communications, 1989, , 797-798.	2.0	66
90	Synthesis, solution stability, and crystal structure of aza-thia macrocyclic complexes of silver(I). Journal of the Chemical Society Chemical Communications, 1989, , 1870.	2.0	30

RITU KATAKY

#	Article	IF	CITATIONS
91	Towards tumour targeting with copper-radiolabelled macrocycle–antibody conjugates. Journal of the Chemical Society Chemical Communications, 1989, , 792-794.	2.0	26