Wilfred Chen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5452202/wilfred-chen-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 103 13,239 241 h-index g-index citations papers 14,286 6.47 6.3 249 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
241	Deciphering the Design Rules of Toehold-Gated sgRNA for Conditional Activation of Gene Expression and Protein Degradation in Mammalian Cells <i>ACS Synthetic Biology</i> , 2022 , 11, 397-405	5.7	O
240	Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells <i>Molecular Pharmaceutics</i> , 2022 ,	5.6	3
239	Outer membrane vesicles (OMVs) enabled bio-applications: A critical review. <i>Biotechnology and Bioengineering</i> , 2022 , 119, 34-47	4.9	6
238	Strategies for Multienzyme Assemblies. <i>Methods in Molecular Biology</i> , 2022 , 113-131	1.4	
237	Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation. <i>Biotechnology Progress</i> , 2021 , 37, e3190	2.8	2
236	Engineering a Blue Light Inducible SpyTag System (BLISS). <i>Journal of the American Chemical Society</i> , 2021 , 143, 8572-8577	16.4	3
235	Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution 2021 , 81-103		
234	Engineering bionanoparticles for improved biosensing and bioimaging. <i>Current Opinion in Biotechnology</i> , 2021 , 71, 41-48	11.4	2
233	Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2020 , 11, 35-62	8.9	8
232	Synthesis of gold nanostructures using glycine as the reducing agent. <i>Nanotechnology</i> , 2020 , 31, 45560	13.4	1
231	Conditional Protein Rescue by Binding-Induced Protective Shielding. ACS Synthetic Biology, 2020 , 9, 263	19 5 2764	7 o
230	Controlling metabolic flux by toehold-mediated strand displacement. <i>Current Opinion in Biotechnology</i> , 2020 , 66, 150-157	11.4	1
229	Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery. <i>ACS Nano</i> , 2020 , 14, 12642-12651	16.7	20
228	Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. <i>Bioconjugate Chemistry</i> , 2020 , 31, 2272-2282	6.3	9
227	A modular approach for dCas9-mediated enzyme cascading orthogonal bioconjugation. <i>Chemical Communications</i> , 2020 , 56, 11426-11428	5.8	3
226	Synthetic biology approaches for targeted protein degradation. <i>Biotechnology Advances</i> , 2019 , 37, 1074	1 46 .8	6
225	Artificial scaffolds for enhanced biocatalysis. <i>Methods in Enzymology</i> , 2019 , 617, 363-383	1.7	5

224	Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases. <i>ChemBioChem</i> , 2019 , 20, 1394-1399	3.8	13
223	Exploiting dCas9 fusion proteins for dynamic assembly of synthetic metabolons. <i>Chemical Communications</i> , 2019 , 55, 8219-8222	5.8	13
222	Tunable modulation of antibody-antigen interaction by protease cleavage of protein M. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 2834-2842	4.9	1
221	Genetically engineered bio-nanoparticles with co-expressed enzyme reporter and recognition element for IgG immunoassay. <i>Sensors and Actuators Reports</i> , 2019 , 1, 100003	4.7	7
220	Genetically Engineered Bacterial Outer Membrane Vesicles with Expressed Nanoluciferase Reporter for Bioluminescence Kinetic Modeling through Noninvasive Imaging <i>ACS Applied Bio Materials</i> , 2019 , 2, 5608-5615	4.1	8
219	Controlled Epidermal Growth Factor Receptor Ligand Display on Cancer Suicide Enzymes via Unnatural Amino Acid Engineering for Enhanced Intracellular Delivery in Breast Cancer Cells. <i>Bioconjugate Chemistry</i> , 2019 , 30, 432-442	6.3	11
218	Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. <i>Nature Chemical Biology</i> , 2019 , 15, 217-220	11.7	61
217	High-efficiency affinity precipitation of multiple industrial mAbs and Fc-fusion proteins from cell culture harvests using Z-ELP-E2 nanocages. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 2039-2047	4.9	9
216	Dynamic protein assembly by programmable DNA strand displacement. <i>Nature Chemistry</i> , 2018 , 10, 474	1- 1/ 8.6	62
215	One-step affinity capture and precipitation for improved purification of an industrial monoclonal antibody using Z-ELP functionalized nanocages. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 423-432	4.9	20
214	SpyTag/SpyCatcher Functionalization of E2 Nanocages with Stimuli-Responsive Z-ELP Affinity Domains for Tunable Monoclonal Antibody Binding and Precipitation Properties. <i>Bioconjugate Chemistry</i> , 2018 , 29, 3113-3120	6.3	11
213	Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. <i>Current Opinion in Biotechnology</i> , 2018 , 50, 81-93	11.4	64
212	Rapid Quantification of Monoclonal Antibody Titer in Cell Culture Harvests by Antibody-Induced Z-ELP-E2 Nanoparticle Cross-Linking. <i>Analytical Chemistry</i> , 2018 , 90, 14447-14452	7.8	6
211	A tribute to Professor Jay Bailey: A pioneer in biochemical engineering. <i>AICHE Journal</i> , 2018 , 64, 4179-4	1388	O
210	Ligand-Induced Cross-Linking of Z-Elastin-like Polypeptide-Functionalized E2 Protein Nanoparticles for Enhanced Affinity Precipitation of Antibodies. <i>Biomacromolecules</i> , 2017 , 18, 1654-1659	6.9	17
209	Control of the Yeast Mating Pathway by Reconstitution of Functional Factor Using Split Intein-Catalyzed Reactions. <i>ACS Synthetic Biology</i> , 2017 , 6, 1453-1460	5.7	3
208	Engineering multi-functional bacterial outer membrane vesicles as modular nanodevices for biosensing and bioimaging. <i>Chemical Communications</i> , 2017 , 53, 7569-7572	5.8	32
207	In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex. <i>Biotechnology Progress</i> , 2017 , 33, 1243-1249	2.8	8

206	Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels. <i>Acta Biomaterialia</i> , 2017 , 56, 80-90	10.8	29
205	DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and HO. <i>Journal of Biotechnology</i> , 2017 , 263, 30-35	3.7	8
204	Induced prodrug activation by conditional protein degradation. <i>Journal of Biotechnology</i> , 2017 , 260, 62	-66 7	5
203	Protein Nanoparticles as Multifunctional Biocatalysts and Health Assessment Sensors. <i>Current Opinion in Chemical Engineering</i> , 2016 , 13, 109-118	5.4	19
202	Scaffoldless engineered enzyme assembly for enhanced methanol utilization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12691-12696	11.5	70
201	ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system. <i>Biosensors and Bioelectronics</i> , 2016 , 85, 935-942	11.8	54
200	HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis. <i>Chemical Communications</i> , 2016 , 52, 6701-4	5.8	25
199	A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains. <i>Journal of Biotechnology</i> , 2016 , 234, 27-34	3.7	12
198	Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly. <i>ACS Nano</i> , 2015 , 9, 8554-61	16.7	32
197	Sortase A-mediated multi-functionalization of protein nanoparticles. <i>Chemical Communications</i> , 2015 , 51, 12107-10	5.8	47
196	Synthetic scaffolds for pathway enhancement. Current Opinion in Biotechnology, 2015, 36, 98-106	11.4	63
195	Fluorescent protein-based molecular beacons by zinc finger protein-guided assembly. <i>Biotechnology and Bioengineering</i> , 2015 , 112, 236-41	4.9	8
194	Bioengineering strategies to generate artificial protein complexes. <i>Biotechnology and Bioengineering</i> , 2015 , 112, 1495-505	4.9	12
193	Biomolecular scaffolds for enhanced signaling and catalytic efficiency. <i>Current Opinion in Biotechnology</i> , 2014 , 28, 59-68	11.4	57
192	Quantitative assessment of in vivo HIV protease activity using genetically engineered QD-based FRET probes. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 1082-7	4.9	12
191	Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques. <i>Journal of Biotechnology</i> , 2014 , 192 Pt A, 11-9	3.7	13
190	Halo-tag mediated self-labeling of fluorescent proteins to molecular beacons for nucleic acid detection. <i>Chemical Communications</i> , 2014 , 50, 13735-8	5.8	21
189	Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis. <i>Chemical Communications</i> , 2014 , 50, 1423-5	5.8	31

(2012-2014)

188	Affinity precipitation of a monoclonal antibody from an industrial harvest feedstock using an ELP-Z stimuli responsive biopolymer. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 1595-603	4.9	29
187	Bactericidal activity of elastin-like polypeptide biopolymer with polyhistidine domain and silver. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 119, 66-70	6	7
186	Positional assembly of enzymes on bacterial outer membrane vesicles for cascade reactions. <i>PLoS ONE</i> , 2014 , 9, e97103	3.7	47
185	Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. <i>Chemical Communications</i> , 2013 , 49, 3766-8	5.8	77
184	Microbial biosensors: engineered microorganisms as the sensing machinery. <i>Sensors</i> , 2013 , 13, 5777-95	3.8	135
183	Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. <i>Analytical Methods</i> , 2013 , 5, 3497	3.2	46
182	ELP-z and ELP-zz capturing scaffolds for the purification of immunoglobulins by affinity precipitation. <i>Journal of Biotechnology</i> , 2013 , 163, 10-6	3.7	37
181	Use of flow cytometry for rapid, quantitative detection of poliovirus-infected cells via TAT peptide-delivered molecular beacons. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 696-700	4.8	8
180	High-throughput screening for the development of a monoclonal antibody affinity precipitation step using ELP-z stimuli responsive biopolymers. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 2664-76	4.9	23
179	Functional display of complex cellulosomes on the yeast surface via adaptive assembly. <i>ACS Synthetic Biology</i> , 2013 , 2, 14-21	5.7	72
178	Engineering protein modules for diagnostic applications. <i>Current Opinion in Chemical Engineering</i> , 2013 , 2, 416-424	5.4	1
177	Size-modulated synergy of cellulase clustering for enhanced cellulose hydrolysis. <i>Biotechnology Journal</i> , 2013 , 8, 257-61	5.6	30
176	Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 275-85	4.9	26
175	Engineering a recyclable elastin-like polypeptide capturing scaffold for non-chromatographic protein purification. <i>Biotechnology Progress</i> , 2013 , 29, 968-71	2.8	8
174	Hydrophilic and antimicrobial Ag-exchanged zeolite a coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 352-357	5.3	34
173	Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 605-8	4.9	15
172	Tuning Electrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 9202-9208	3.8	15
171	Biologically Assembled Nanobiocatalysts. <i>Topics in Catalysis</i> , 2012 , 55, 1138-1145	2.3	8

170	Engineering a high-affinity scaffold for non-chromatographic protein purification via intein-mediated cleavage. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 2829-35	4.9	23
169	Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. <i>Biotechnology Progress</i> , 2012 , 28, 654-61	2.8	16
168	Prospective of Conducting Polymer Nanowire for Gas Sensing Application to its Physical Scaling. <i>Advanced Materials Research</i> , 2012 , 584, 224-228	0.5	3
167	Simultaneous detection of infectious human echoviruses and adenoviruses by an in situ nuclease-resistant molecular beacon-based assay. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 1584-8	4.8	10
166	A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer. <i>Chemical Communications</i> , 2011 , 47, 5259-61	5.8	37
165	Detecting RNA viruses in living mammalian cells by fluorescence microscopy. <i>Trends in Biotechnology</i> , 2011 , 29, 307-13	15.1	32
164	A fluorescence resonance energy transfer-based fluorometer assay for screening anti-coxsackievirus B3 compounds. <i>Journal of Virological Methods</i> , 2011 , 171, 176-82	2.6	2
163	Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. <i>Microbial Cell Factories</i> , 2011 , 10, 89	6.4	79
162	Single Conducting Polymer Nanowire Based Sequence-Specific, Base-Pair-Length Dependant Label-free DNA Sensor. <i>Electroanalysis</i> , 2011 , 23, 371-379	3	36
161	Selective and Rapid Room Temperature Detection of H2S Using Gold Nanoparticle Chain Arrays. <i>Electroanalysis</i> , 2011 , 23, 2623-2628	3	32
160	Synthesis of chalcogenide ternary and quaternary nanotubes through directed compositional alterations of bacterial AsB nanotubes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10277		7
159	Detection of murine norovirus-1 by using TAT peptide-delivered molecular beacons. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5517-20	4.8	11
158	Detection of infective poliovirus by a simple, rapid, and sensitive flow cytometry method based on fluorescence resonance energy transfer technology. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 584-8	4.8	17
157	Enzyme mediated synthesis of phytochelatin-capped CdS nanocrystals. <i>Applied Physics Letters</i> , 2010 , 97, 123703	3.4	11
156	Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7514-20	4.8	141
155	Nano aptasensor for protective antigen toxin of anthrax. <i>Analytical Chemistry</i> , 2010 , 82, 2042-7	7.8	87
154	Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5024-6	16.4	136
153	Effect of (L:D) Aspect Ratio on Single Polypyrrole Nanowire FET Device. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13375-13380	3.8	35

(2008-2010)

152	Label-free chemiresistive immunosensors for viruses. <i>Environmental Science & Environmental Science & </i>	10.3	38
151	Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. <i>Chemical Communications</i> , 2010 , 46, 3914-6	5.8	70
150	Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli. <i>Biotechnology and Bioengineering</i> , 2010 , 105, 780-5	4.9	20
149	Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 1297-301	11.8	64
148	Conducting polymer 1-dimensional nanostructures for FET sensors. <i>Thin Solid Films</i> , 2010 , 519, 964-973	2.2	35
147	Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6087-93	4.8	165
146	Optimization of a whole-cell cadmium sensor with a toggle gene circuit. <i>Biotechnology Progress</i> , 2009 , 25, 898-903	2.8	43
145	Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1451-5	11.8	28
144	Arsenic metabolism by microbes in nature and the impact on arsenic remediation. <i>Current Opinion in Biotechnology</i> , 2009 , 20, 659-67	11.4	131
143	Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 6171-7	5.7	19
142	Real-time molecular methods to detect infectious viruses. <i>Seminars in Cell and Developmental Biology</i> , 2009 , 20, 49-54	7.5	29
141	Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. <i>Analytical Chemistry</i> , 2009 , 81, 2168-75	7.8	140
140	Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. <i>Antiviral Research</i> , 2008 , 77, 232-6	10.8	60
139	Synthesis and characterization of cadmium telluride nanowire. <i>Nanotechnology</i> , 2008 , 19, 325711	3.4	47
138	Recent biosensing developments in environmental security. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 703-12		61
137	Versatile microbial surface-display for environmental remediation and biofuels production. <i>Trends in Microbiology</i> , 2008 , 16, 181-8	12.4	91
136	Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	23
135	Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA. <i>Applied Microbiology and Biotechnology</i> , 2008 , 79, 511-8	5.7	9

134	Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2924-	74.8	60
133	Visualizing the dynamics of viral replication in living cells via Tat peptide delivery of nuclease-resistant molecular beacons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 17522-5	11.5	58
132	Detection of hepatitis a virus by using a combined cell culture-molecular beacon assay. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2239-43	4.8	26
131	Development of an autofluorescent whole-cell biocatalyst by displaying dual functional moieties on Escherichia coli cell surfaces and construction of a coculture with organophosphate-mineralizing activity. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 7733-9	4.8	20
130	Molecular beacons: a real-time polymerase chain reaction assay for detecting Escherichia coli from fresh produce and water. <i>Analytica Chimica Acta</i> , 2008 , 614, 208-12	6.6	51
129	Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of Helical Fibers and their Reversible Switching between Superhydrophobicity and Superhydrophilicity. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 832-838	4.8	70
128	Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 30-7	4.9	44
127	Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 485-90	4.9	30
126	Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 333-40	4.9	41
125	Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5186-9	16.4	98
124	Bioremediation: environmental clean-up through pathway engineering. <i>Current Opinion in Biotechnology</i> , 2008 , 19, 437-44	11.4	136
123	Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. <i>Biomacromolecules</i> , 2007 , 8, 3736-9	6.9	41
122	Field-Effect Transistors Based on Single Nanowires of Conducting Polymers. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5218-5221	3.8	69
121	Cadmium removal from contaminated soil by thermally responsive elastin (ELPEC20) biopolymers. <i>Biotechnology and Bioengineering</i> , 2007 , 98, 349-55	4.9	25
120	Single-Walled Carbon Nanotube Based Real-Time Organophosphate Detector. <i>Electroanalysis</i> , 2007 , 19, 616-619	3	37
119	In Situ Fabrication of Single Poly(methyl pyrrole) Nanowire. <i>Electroanalysis</i> , 2007 , 19, 793-797	3	18
118	Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 2636-42	11.8	85
117	Affinity purification of plasmid DNA by temperature-triggered precipitation. <i>Nature Protocols</i> , 2007 , 2, 1263-8	18.8	16

(2006-2007)

116	Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. <i>Applied Biochemistry and Biotechnology</i> , 2007 , 136, 243-50	3.2	47
115	Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6317-20	4.8	88
114	Comparison of a reporter assay and immunomagnetic separation real-time reverse transcription-PCR for the detection of enteroviruses in seeded environmental water samples. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2338-40	4.8	32
113	Elastin-calmodulin scaffold for protein microarray fabrication. <i>Langmuir</i> , 2007 , 23, 2277-9	4	8
112	Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. <i>Talanta</i> , 2007 , 74, 370-5	6.2	52
111	Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 522-9	4.9	61
110	Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. <i>Biotechnology and Bioengineering</i> , 2006 , 95, 399-403	4.9	40
109	Nanowire-Based Electrochemical Biosensors. <i>Electroanalysis</i> , 2006 , 18, 533-550	3	390
108	Fabrication and Properties of Conducting Polypyrrole/SWNT-PABS Composite Films and Nanotubes. <i>Electroanalysis</i> , 2006 , 18, 1047-1054	3	44
107	Durability of hydrophilic and antimicrobial zeolite coatings under water immersion. <i>AICHE Journal</i> , 2006 , 52, 1157-1161	3.6	29
106	Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1129-34	4.8	222
105	Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. <i>Protein Engineering, Design and Selection</i> , 2006 , 19, 99-105	1.9	45
104	Fabrication of antibody arrays using thermally responsive elastin fusion proteins. <i>Journal of the American Chemical Society</i> , 2006 , 128, 676-7	16.4	65
103	Use of fluorescence resonance energy transfer for rapid detection of enteroviral infection in vivo. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3710-5	4.8	35
102	V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. <i>Analytical Chemistry</i> , 2006 , 78, 331-6	7.8	124
101	Simple conjugation and purification of quantum dot-antibody complexes using a thermally responsive elastin-protein L scaffold as immunofluoresecent agents. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14756-7	16.4	49
100	Controlled assembly of multi-segment nanowires by histidine-tagged peptides. <i>Nanotechnology</i> , 2006 , 17, 3375-9	3.4	21
99	Proteome changes after metabolic engineering to enhance aerobic mineralization of cis-1,2-dichloroethylene. <i>Journal of Proteome Research</i> , 2006 , 5, 1388-97	5.6	30

98	Biosensor for Direct Determination of Fenitrothion and EPN Using Recombinant Pseudomonas putida JS444 with Surface Expressed Organophosphorus Hydrolase. 1. Modified Clark Oxygen Electrode. <i>Sensors</i> , 2006 , 6, 466-472	3.8	29
97	Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. <i>Biotechnology Progress</i> , 2006 , 22, 939-43	2.8	55
96	Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. <i>Analytica Chimica Acta</i> , 2006 , 568, 217-21	6.6	59
95	Microbial biosensors. <i>Analytica Chimica Acta</i> , 2006 , 568, 200-10	6.6	353
94	Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. <i>Biotechnology Progress</i> , 2005 , 21, 678-81	2.8	32
93	Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. <i>Journal of the American Chemical Society</i> , 2005 , 127, 496-7	16.4	357
92	Genetically engineered elastin-protein A fusion as a universal platform for homogeneous, phase-separation immunoassay. <i>Analytical Chemistry</i> , 2005 , 77, 2318-22	7.8	49
91	Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 524-7	5.7	43
90	Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	117
89	Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. <i>Environmental Science & amp; Technology</i> , 2005 , 39, 8853-7	10.3	82
88	Electrochemical and optical bioassays of nerve agents based on the organophosphorus-hydrolase mediated growth of cupric ferrocyanide nanoparticles. <i>Electrochemistry Communications</i> , 2005 , 7, 1371	-15374	10
87	Amperometric microbial biosensor for p-nitrophenol using Moraxella spmodified carbon paste electrode. <i>Biosensors and Bioelectronics</i> , 2005 , 21, 523-7	11.8	129
86	Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. <i>Analytica Chimica Acta</i> , 2005 , 530, 185-189	6.6	227
85	Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	184
84	A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode. <i>Electroanalysis</i> , 2005 , 17, 54-58	3	200
83	Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6009-12	16.4	341
82	Temperature-triggered purification of antibodies. <i>Biotechnology and Bioengineering</i> , 2005 , 90, 373-9	4.9	44
81	Detoxification of organophosphate nerve agents by immobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor. <i>Biotechnology and Bioengineering</i> , 2005 , 91, 379-86	4.9	32

(2003-2005)

80	Environmental biotechnology: Challenges and opportunities for chemical engineers. <i>AICHE Journal</i> , 2005 , 51, 690-695	3.6	27
79	Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2005 , 32, 554-60	4.2	49
78	Customizable Biopolymers for Heavy Metal Remediation. <i>Journal of Nanoparticle Research</i> , 2005 , 7, 517	- 5 <i>2</i> ₃ 3	31
77	Visualization and detection of infectious coxsackievirus replication using a combined cell culture-molecular beacon assay. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 8397-401	4.8	18
76	Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 7113-6	4.8	53
75	Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3995-4003	4.8	70
74	Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4681-5	4.8	94
73	Combined immunomagnetic separation-molecular beacon-reverse transcription-PCR assay for detection of hepatitis A virus from environmental samples. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4371-4	4.8	46
72	Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase. <i>Journal of Biological Chemistry</i> , 2004 , 279, 46810-7	5.4	52
71	Affinity purification of plasmid DNA by temperature-triggered precipitation. <i>Biotechnology and Bioengineering</i> , 2004 , 85, 293-7	4.9	24
70	Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. <i>Biotechnology and Bioengineering</i> , 2004 , 85, 706-13	4.9	31
69	Microchip enzymatic assay of organophosphate nerve agents. <i>Analytica Chimica Acta</i> , 2004 , 505, 183-18	7 6.6	49
68	Outrunning Nature: Directed Evolution of Superior Biocatalysts. <i>Journal of Chemical Education</i> , 2004 , 81, 126	2.4	11
67	Cadmium removal from contaminated soil by tunable biopolymers. <i>Environmental Science & Environmental Science & Technology</i> , 2004 , 38, 3148-52	10.3	42
66	Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4582-7	4.8	147
65	Individually Addressable Conducting Polymer Nanowires Array. <i>Nano Letters</i> , 2004 , 4, 1237-1239	11.5	213
64	Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 3176-80	4.8	110
63	Towards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development. <i>Sensors</i> , 2003 , 3, 119-127	3.8	21

62	Biological Detoxification of Organophosphate Pesticides. ACS Symposium Series, 2003, 25-36	0.4	2
61	A Microbial Biosensor for p-Nitrophenol Using Arthrobacter Sp <i>Electroanalysis</i> , 2003 , 15, 1160-1164	3	29
60	Thermally triggered purification and immobilization of elastin-OPH fusions. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 74-9	4.9	66
59	One-step metal-affinity purification of histidine-tagged proteins by temperature-triggered precipitation. <i>Biotechnology and Bioengineering</i> , 2003 , 82, 605-11	4.9	47
58	An immunoassay for atrazine using tunable immunosorbent. <i>Analytical Biochemistry</i> , 2003 , 322, 251-6	3.1	26
57	A tubulin-based fluorescent polarization assay for paclitaxel. <i>Analytical Biochemistry</i> , 2003 , 321, 44-9	3.1	10
56	Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. <i>Biosensors and Bioelectronics</i> , 2003 , 18, 547-53	11.8	105
55	Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. <i>Biotechnology Progress</i> , 2003 , 19, 1612-4	2.8	37
54	Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. <i>Biotechnology Progress</i> , 2003 , 19, 1812-5	2.8	29
53	A temperature responsive biopolymer for mercury remediation. <i>Environmental Science & Environmental Sc</i>	10.3	65
52	Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. <i>Electroanalysis</i> , 2002 , 14, 273-276	3	52
51	Cell-Surface display of heterologous proteins: From high-throughput screening to environmental applications. <i>Biotechnology and Bioengineering</i> , 2002 , 79, 496-503	4.9	94
50	Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. <i>Journal of Inorganic Biochemistry</i> , 2002 , 88, 223-7	4.2	61
49	Microbial biosensor for p-nitrophenol using Moraxella sp Analytica Chimica Acta, 2002 , 470, 79-86	6.6	29
48	Dual amperometric potentiometric biosensor detection system for monitoring organophosphorus neurotoxins. <i>Analytica Chimica Acta</i> , 2002 , 469, 197-203	6.6	51
47	Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 2026-3	04.8	155
46	Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 1684-9	4.8	48
45	Enhanced Bioaccumulation of Heavy Metals by Bacterial Cells with Surface-Displayed Synthetic Phytochelatins. <i>ACS Symposium Series</i> , 2002 , 411-418	0.4	1

(2000-2002)

44	Heavy metal removal by novel CBD-EC20 sorbents immobilized on cellulose. <i>Biomacromolecules</i> , 2002 , 3, 462-5	6.9	27
43	Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity 2002 , 14, 273		1
42	Biosensors for direct determination of organophosphate pesticides. <i>Biosensors and Bioelectronics</i> , 2001 , 16, 225-30	11.8	297
41	Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7. <i>Analytical Biochemistry</i> , 2001 , 289, 281-8	3.1	113
40	Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. <i>Biotechnology and Bioengineering</i> , 2001 , 76, 318-24	4.9	129
39	Tunable Biopolymers for Heavy Metal Removal. <i>Macromolecules</i> , 2001 , 34, 2257-2261	5.5	94
38	Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. <i>Biosensors and Bioelectronics</i> , 2001 , 16, 433-7	11.8	113
37	Cell surface display of organophosphorus hydrolase using ice nucleation protein. <i>Biotechnology Progress</i> , 2001 , 17, 76-80	2.8	87
36	Effects of FIS overexpression on cell growth, rRNA synthesis, and ribosome content in Escherichia coli. <i>Biotechnology Progress</i> , 2001 , 17, 252-7	2.8	10
35	Whole-cell immobilization using cell surface-exposed cellulose-binding domain. <i>Biotechnology Progress</i> , 2001 , 17, 407-11	2.8	34
34	Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 5335-8	4.8	112
33	Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. <i>Analytical Chemistry</i> , 2001 , 73, 1804-8	7.8	112
32	Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. <i>Environmental Science & Environmental Science </i>	10.3	100
31	Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. <i>Biotechnology and Bioengineering</i> , 2000 , 69, 591-	6 ^{4.9}	89
30	Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. <i>Biotechnology and Bioengineering</i> , 2000 , 70, 518-24	4.9	166
29	Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella. <i>Analytical Biochemistry</i> , 2000 , 280, 166-72	3.1	129
28	Biodetoxification of coumaphos insecticide using immobilizedEscherichia coli expressing organophosphorus hydrolase enzyme on cell surface. <i>Biotechnology and Bioprocess Engineering</i> , 2000 , 5, 436-440	3.1	18
27	Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes 2000 , 69, 591		5

26	Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. <i>Biosensors and Bioelectronics</i> , 1999 , 14, 77-85	11.8	156
25	Engineering of improved microbes and enzymes for bioremediation. <i>Current Opinion in Biotechnology</i> , 1999 , 10, 137-41	11.4	88
24	Fiber-optic enzyme biosensor for direct determination of organophosphate nerve agents. <i>Biotechnology Progress</i> , 1999 , 15, 130-4	2.8	88
23	Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. <i>Electroanalysis</i> , 1999 , 11, 866-869	3	89
22	Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli. <i>Electrophoresis</i> , 1999 , 20, 798-805	3.6	17
21	Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. <i>Biotechnology and Bioengineering</i> , 1999 , 63, 216-23	4.9	75
20	Tuning biphenyl dioxygenase for extended substrate specificity. <i>Biotechnology and Bioengineering</i> , 1999 , 63, 544-51	4.9	81
19	Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. <i>Analytical Chemistry</i> , 1999 , 71, 2246-9	7.8	152
18	Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents 1999 , 11, 866		2
17	Factors influencing parathion degradation by recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. <i>Biotechnology Progress</i> , 1998 , 14, 275-8	2.8	13
16	The use of live biocatalysts for pesticide detoxification. <i>Trends in Biotechnology</i> , 1998 , 16, 71-6	15.1	73
15	A Potentiometric Microbial Biosensor for Direct Determination of Organophosphate Nerve Agents. <i>Electroanalysis</i> , 1998 , 10, 733-737	3	44
14	Enzyme biosensor for determination of organophosphates. <i>Field Analytical Chemistry and Technology</i> , 1998 , 2, 363-369		25
13	Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber-optic microbial biosensor. <i>Analytical Chemistry</i> , 1998 , 70, 5042-6	7.8	116
12	Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. <i>Analytical Chemistry</i> , 1998 , 70, 4140-5	7.8	157
11	Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. <i>Nature Biotechnology</i> , 1997 , 15, 984-7	44.5	260
10	Innovative bioreactors. Current Opinion in Biotechnology, 1997, 8, 165-8	11.4	7
9	Improvement in recombinant protein production in ppGpp-deficient Escherichia coli. <i>Biotechnology and Bioengineering</i> , 1997 , 53, 379-86	4.9	21

LIST OF PUBLICATIONS

8	Design of expression systems for metabolic engineering: coordinated synthesis and degradation of glycogen. <i>Biotechnology and Bioengineering</i> , 1997 , 55, 419-26	4.9	2
7	Elevated Fis expression enhances recombinant protein production in Escherichia coli. <i>Biotechnology and Bioengineering</i> , 1997 , 56, 138-44	4.9	4
6	Process characterization of a novel cross-regulation system for cloned protein production in Escherichia coli. <i>Biotechnology Progress</i> , 1995 , 11, 397-402	2.8	9
5	Communication to the editor. Application of the cross-regulation system as a metabolic switch. <i>Biotechnology and Bioengineering</i> , 1994 , 43, 1190-3	4.9	13
4	Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. <i>Biotechnology Progress</i> , 1994 , 10, 308-13	2.8	69
3	Construction and characterization of a novel cross-regulation system for regulating cloned gene expression in Escherichia coli. <i>Gene</i> , 1993 , 130, 15-22	3.8	29
2	Molecular design of expression systems: comparison of different control configurations using molecular mechanism models. <i>Biotechnology and Bioengineering</i> , 1991 , 38, 679-87	4.9	18
1	Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli218-225		