Wilfred Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/5452202/wilfred-chen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65 103 13,239 241 h-index g-index citations papers 14,286 6.47 6.3 249 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
241	Nanowire-Based Electrochemical Biosensors. <i>Electroanalysis</i> , 2006 , 18, 533-550	3	390
240	Bioaffinity sensing using biologically functionalized conducting-polymer nanowire. <i>Journal of the American Chemical Society</i> , 2005 , 127, 496-7	16.4	357
239	Microbial biosensors. <i>Analytica Chimica Acta</i> , 2006 , 568, 200-10	6.6	353
238	Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 6009-12	16.4	341
237	Biosensors for direct determination of organophosphate pesticides. <i>Biosensors and Bioelectronics</i> , 2001 , 16, 225-30	11.8	297
236	Biodegradation of organophosphorus pesticides by surface-expressed organophosphorus hydrolase. <i>Nature Biotechnology</i> , 1997 , 15, 984-7	44.5	260
235	Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. <i>Analytica Chimica Acta</i> , 2005 , 530, 185-189	6.6	227
234	Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1129-34	4.8	222
233	Individually Addressable Conducting Polymer Nanowires Array. <i>Nano Letters</i> , 2004 , 4, 1237-1239	11.5	213
232	A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode. <i>Electroanalysis</i> , 2005 , 17, 54-58	3	200
231	Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	184
230	Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. <i>Biotechnology and Bioengineering</i> , 2000 , 70, 518-24	4.9	166
229	Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 6087-93	4.8	165
228	Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. <i>Analytical Chemistry</i> , 1998 , 70, 4140-5	7.8	157
227	Biosensor for direct determination of organophosphate nerve agents. 1. Potentiometric enzyme electrode. <i>Biosensors and Bioelectronics</i> , 1999 , 14, 77-85	11.8	156
226	Bacterial cell surface display of organophosphorus hydrolase for selective screening of improved hydrolysis of organophosphate nerve agents. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 2026-3	30 ^{4.8}	155
225	Amperometric thick-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphorus hydrolase. <i>Analytical Chemistry</i> , 1999 , 71, 2246-9	7.8	152

(2003-2004)

224	Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4582-7	4.8	147
223	Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7514-20	4.8	141
222	Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. <i>Analytical Chemistry</i> , 2009 , 81, 2168-75	7.8	140
221	Single-walled carbon nanotube-based chemiresistive affinity biosensors for small molecules: ultrasensitive glucose detection. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5024-6	16.4	136
220	Bioremediation: environmental clean-up through pathway engineering. <i>Current Opinion in Biotechnology</i> , 2008 , 19, 437-44	11.4	136
219	Microbial biosensors: engineered microorganisms as the sensing machinery. <i>Sensors</i> , 2013 , 13, 5777-95	3.8	135
218	Arsenic metabolism by microbes in nature and the impact on arsenic remediation. <i>Current Opinion in Biotechnology</i> , 2009 , 20, 659-67	11.4	131
217	Amperometric microbial biosensor for p-nitrophenol using Moraxella spmodified carbon paste electrode. <i>Biosensors and Bioelectronics</i> , 2005 , 21, 523-7	11.8	129
216	Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. <i>Biotechnology and Bioengineering</i> , 2001 , 76, 318-24	4.9	129
215	Molecular beacons: a real-time polymerase chain reaction assay for detecting Salmonella. <i>Analytical Biochemistry</i> , 2000 , 280, 166-72	3.1	129
214	V-type nerve agent detection using a carbon nanotube-based amperometric enzyme electrode. <i>Analytical Chemistry</i> , 2006 , 78, 331-6	7.8	124
213	Removal of estrogenic pollutants from contaminated water using molecularly imprinted polymers. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	117
212	Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber-optic microbial biosensor. <i>Analytical Chemistry</i> , 1998 , 70, 5042-6	7.8	116
211	Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157:H7. <i>Analytical Biochemistry</i> , 2001 , 289, 281-8	3.1	113
210	Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. <i>Biosensors and Bioelectronics</i> , 2001 , 16, 433-7	11.8	113
209	Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. <i>Applied and Environmental Microbiology</i> , 2001 , 67, 5335-8	4.8	112
208	Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. <i>Analytical Chemistry</i> , 2001 , 73, 1804-8	7.8	112
207	Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 3176-80	4.8	110

206	Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. <i>Biosensors and Bioelectronics</i> , 2003 , 18, 547-53	11.8	105
205	Flow injection amperometric enzyme biosensor for direct determination of organophosphate nerve agents. <i>Environmental Science & Environmental Science </i>	10.3	100
204	Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5186-9	16.4	98
203	Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4681-5	4.8	94
202	Cell-Surface display of heterologous proteins: From high-throughput screening to environmental applications. <i>Biotechnology and Bioengineering</i> , 2002 , 79, 496-503	4.9	94
201	Tunable Biopolymers for Heavy Metal Removal. <i>Macromolecules</i> , 2001 , 34, 2257-2261	5.5	94
200	Versatile microbial surface-display for environmental remediation and biofuels production. <i>Trends in Microbiology</i> , 2008 , 16, 181-8	12.4	91
199	Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes. <i>Biotechnology and Bioengineering</i> , 2000 , 69, 591-	6 ^{4.9}	89
198	Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents. <i>Electroanalysis</i> , 1999 , 11, 866-869	3	89
197	Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 6317-20	4.8	88
196	Engineering of improved microbes and enzymes for bioremediation. <i>Current Opinion in Biotechnology</i> , 1999 , 10, 137-41	11.4	88
195	Fiber-optic enzyme biosensor for direct determination of organophosphate nerve agents. <i>Biotechnology Progress</i> , 1999 , 15, 130-4	2.8	88
194	Nano aptasensor for protective antigen toxin of anthrax. <i>Analytical Chemistry</i> , 2010 , 82, 2042-7	7.8	87
193	Cell surface display of organophosphorus hydrolase using ice nucleation protein. <i>Biotechnology Progress</i> , 2001 , 17, 76-80	2.8	87
192	Organophosphorus hydrolase multilayer modified microcantilevers for organophosphorus detection. <i>Biosensors and Bioelectronics</i> , 2007 , 22, 2636-42	11.8	85
191	Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. <i>Environmental Science & amp; Technology</i> , 2005, 39, 8853-7	10.3	82
190	Tuning biphenyl dioxygenase for extended substrate specificity. <i>Biotechnology and Bioengineering</i> , 1999 , 63, 544-51	4.9	81
189	Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. <i>Microbial Cell Factories</i> , 2011 , 10, 89	6.4	79

(2008-2013)

188	Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. <i>Chemical Communications</i> , 2013 , 49, 3766-8	5.8	77
187	Detoxification of organophosphate nerve agents by immobilized Escherichia coli with surface-expressed organophosphorus hydrolase. <i>Biotechnology and Bioengineering</i> , 1999 , 63, 216-23	4.9	75
186	The use of live biocatalysts for pesticide detoxification. <i>Trends in Biotechnology</i> , 1998 , 16, 71-6	15.1	73
185	Functional display of complex cellulosomes on the yeast surface via adaptive assembly. <i>ACS Synthetic Biology</i> , 2013 , 2, 14-21	5.7	72
184	Scaffoldless engineered enzyme assembly for enhanced methanol utilization. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12691-12696	11.5	70
183	Molecular beacon-quantum dot-Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. <i>Chemical Communications</i> , 2010 , 46, 3914-6	5.8	70
182	Electrochemical Synthesis of Perfluorinated Ion Doped Conducting Polyaniline Films Consisting of Helical Fibers and their Reversible Switching between Superhydrophobicity and Superhydrophilicity. <i>Macromolecular Rapid Communications</i> , 2008 , 29, 832-838	4.8	70
181	Protein engineering of epoxide hydrolase from Agrobacterium radiobacter AD1 for enhanced activity and enantioselective production of (R)-1-phenylethane-1,2-diol. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 3995-4003	4.8	70
180	Field-Effect Transistors Based on Single Nanowires of Conducting Polymers. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 5218-5221	3.8	69
179	Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiae. <i>Biotechnology Progress</i> , 1994 , 10, 308-13	2.8	69
178	Thermally triggered purification and immobilization of elastin-OPH fusions. <i>Biotechnology and Bioengineering</i> , 2003 , 81, 74-9	4.9	66
177	Fabrication of antibody arrays using thermally responsive elastin fusion proteins. <i>Journal of the American Chemical Society</i> , 2006 , 128, 676-7	16.4	65
176	A temperature responsive biopolymer for mercury remediation. <i>Environmental Science & Environmental Sc</i>	10.3	65
175	Carbon nanotubes-based chemiresistive immunosensor for small molecules: detection of nitroaromatic explosives. <i>Biosensors and Bioelectronics</i> , 2010 , 26, 1297-301	11.8	64
174	Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. <i>Current Opinion in Biotechnology</i> , 2018 , 50, 81-93	11.4	64
173	Synthetic scaffolds for pathway enhancement. Current Opinion in Biotechnology, 2015, 36, 98-106	11.4	63
172	Dynamic protein assembly by programmable DNA strand displacement. <i>Nature Chemistry</i> , 2018 , 10, 474	- 4/8 .6	62
171	Recent biosensing developments in environmental security. <i>Journal of Environmental Monitoring</i> , 2008 , 10, 703-12		61

170	Enantioconvergent production of (R)-1-phenyl-1,2-ethanediol from styrene oxide by combining the Solanum tuberosum and an evolved Agrobacterium radiobacter AD1 epoxide hydrolases. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 522-9	4.9	61
169	Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. <i>Journal of Inorganic Biochemistry</i> , 2002 , 88, 223-7	4.2	61
168	Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function. <i>Nature Chemical Biology</i> , 2019 , 15, 217-220	11.7	61
167	Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. <i>Antiviral Research</i> , 2008 , 77, 232-6	10.8	60
166	Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2924-7	, 4.8	60
165	Microbial biosensor for direct determination of nitrophenyl-substituted organophosphate nerve agents using genetically engineered Moraxella sp. <i>Analytica Chimica Acta</i> , 2006 , 568, 217-21	6.6	59
164	Visualizing the dynamics of viral replication in living cells via Tat peptide delivery of nuclease-resistant molecular beacons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 17522-5	11.5	58
163	Biomolecular scaffolds for enhanced signaling and catalytic efficiency. <i>Current Opinion in Biotechnology</i> , 2014 , 28, 59-68	11.4	57
162	Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. <i>Biotechnology Progress</i> , 2006 , 22, 939-43	2.8	55
161	ELP-OPH/BSA/TiO2 nanofibers/c-MWCNTs based biosensor for sensitive and selective determination of p-nitrophenyl substituted organophosphate pesticides in aqueous system. <i>Biosensors and Bioelectronics</i> , 2016 , 85, 935-942	11.8	54
160	Real-time nucleic acid sequence-based amplification assay for detection of hepatitis A virus. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 7113-6	4.8	53
159	Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. <i>Talanta</i> , 2007 , 74, 370-5	6.2	52
158	Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase. <i>Journal of Biological Chemistry</i> , 2004 , 279, 46810-7	5.4	52
157	Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity. <i>Electroanalysis</i> , 2002 , 14, 273-276	3	52
156	Molecular beacons: a real-time polymerase chain reaction assay for detecting Escherichia coli from fresh produce and water. <i>Analytica Chimica Acta</i> , 2008 , 614, 208-12	6.6	51
155	Dual amperometricpotentiometric biosensor detection system for monitoring organophosphorus neurotoxins. <i>Analytica Chimica Acta</i> , 2002 , 469, 197-203	6.6	51
154	Genetically engineered elastin-protein A fusion as a universal platform for homogeneous, phase-separation immunoassay. <i>Analytical Chemistry</i> , 2005 , 77, 2318-22	7.8	49
153	Simple conjugation and purification of quantum dot-antibody complexes using a thermally responsive elastin-protein L scaffold as immunofluoresecent agents. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14756-7	16.4	49

152	Microchip enzymatic assay of organophosphate nerve agents. <i>Analytica Chimica Acta</i> , 2004 , 505, 183-1	87 6.6	49
151	Detoxification of the organophosphate nerve agent coumaphos using organophosphorus hydrolase immobilized on cellulose materials. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2005 , 32, 554-60	4.2	49
150	Specific adhesion to cellulose and hydrolysis of organophosphate nerve agents by a genetically engineered Escherichia coli strain with a surface-expressed cellulose-binding domain and organophosphorus hydrolase. <i>Applied and Environmental Microbiology</i> , 2002 , 68, 1684-9	4.8	48
149	Sortase A-mediated multi-functionalization of protein nanoparticles. <i>Chemical Communications</i> , 2015 , 51, 12107-10	5.8	47
148	Positional assembly of enzymes on bacterial outer membrane vesicles for cascade reactions. <i>PLoS ONE</i> , 2014 , 9, e97103	3.7	47
147	Synthesis and characterization of cadmium telluride nanowire. <i>Nanotechnology</i> , 2008 , 19, 325711	3.4	47
146	Biosensor for direct determination of fenitrothion and EPN using recombinant Pseudomonas putida JS444 with surface-expressed organophosphorous hydrolase. 2. Modified carbon paste electrode. <i>Applied Biochemistry and Biotechnology</i> , 2007 , 136, 243-50	3.2	47
145	One-step metal-affinity purification of histidine-tagged proteins by temperature-triggered precipitation. <i>Biotechnology and Bioengineering</i> , 2003 , 82, 605-11	4.9	47
144	Polypyrrole nanoribbon based chemiresistive immunosensors for viral plant pathogen detection. <i>Analytical Methods</i> , 2013 , 5, 3497	3.2	46
143	Combined immunomagnetic separation-molecular beacon-reverse transcription-PCR assay for detection of hepatitis A virus from environmental samples. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 4371-4	4.8	46
142	Functional analysis of organophosphorus hydrolase variants with high degradation activity towards organophosphate pesticides. <i>Protein Engineering, Design and Selection</i> , 2006 , 19, 99-105	1.9	45
141	A Potentiometric Microbial Biosensor for Direct Determination of Organophosphate Nerve Agents. <i>Electroanalysis</i> , 1998 , 10, 733-737	3	44
140	Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 30-7	4.9	44
139	Fabrication and Properties of Conducting Polypyrrole/SWNT-PABS Composite Films and Nanotubes. <i>Electroanalysis</i> , 2006 , 18, 1047-1054	3	44
138	Temperature-triggered purification of antibodies. <i>Biotechnology and Bioengineering</i> , 2005 , 90, 373-9	4.9	44
137	Optimization of a whole-cell cadmium sensor with a toggle gene circuit. <i>Biotechnology Progress</i> , 2009 , 25, 898-903	2.8	43
136	Direct determination of p-nitrophenyl substituent organophosphorus nerve agents using a recombinant Pseudomonas putida JS444-modified Clark oxygen electrode. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 524-7	5.7	43
135	Cadmium removal from contaminated soil by tunable biopolymers. <i>Environmental Science & Environmental </i>	10.3	42

134	Genetic engineering of self-assembled protein hydrogel based on elastin-like sequences with metal binding functionality. <i>Biomacromolecules</i> , 2007 , 8, 3736-9	6.9	41
133	Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 333-40	4.9	41
132	Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation. <i>Biotechnology and Bioengineering</i> , 2006 , 95, 399-403	4.9	40
131	Label-free chemiresistive immunosensors for viruses. <i>Environmental Science & Environmental Science & </i>	10.3	38
130	ELP-z and ELP-zz capturing scaffolds for the purification of immunoglobulins by affinity precipitation. <i>Journal of Biotechnology</i> , 2013 , 163, 10-6	3.7	37
129	A quantum-dot based protein module for in vivo monitoring of protease activity through fluorescence resonance energy transfer. <i>Chemical Communications</i> , 2011 , 47, 5259-61	5.8	37
128	Single-Walled Carbon Nanotube Based Real-Time Organophosphate Detector. <i>Electroanalysis</i> , 2007 , 19, 616-619	3	37
127	Cell surface display of organophosphorus hydrolase in Pseudomonas putida using an ice-nucleation protein anchor. <i>Biotechnology Progress</i> , 2003 , 19, 1612-4	2.8	37
126	Single Conducting Polymer Nanowire Based Sequence-Specific, Base-Pair-Length Dependant Label-free DNA Sensor. <i>Electroanalysis</i> , 2011 , 23, 371-379	3	36
125	Effect of (L:D) Aspect Ratio on Single Polypyrrole Nanowire FET Device. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13375-13380	3.8	35
124	Conducting polymer 1-dimensional nanostructures for FET sensors. <i>Thin Solid Films</i> , 2010 , 519, 964-973	2.2	35
123	Use of fluorescence resonance energy transfer for rapid detection of enteroviral infection in vivo. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3710-5	4.8	35
122	Hydrophilic and antimicrobial Ag-exchanged zeolite a coatings: A year-long durability study and preliminary evidence for their general microbiocidal efficacy to bacteria, fungus and yeast. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 352-357	5.3	34
121	Whole-cell immobilization using cell surface-exposed cellulose-binding domain. <i>Biotechnology Progress</i> , 2001 , 17, 407-11	2.8	34
120	Engineering multi-functional bacterial outer membrane vesicles as modular nanodevices for biosensing and bioimaging. <i>Chemical Communications</i> , 2017 , 53, 7569-7572	5.8	32
119	Post-Translational Modification of Bionanoparticles as a Modular Platform for Biosensor Assembly. <i>ACS Nano</i> , 2015 , 9, 8554-61	16.7	32
118	Detecting RNA viruses in living mammalian cells by fluorescence microscopy. <i>Trends in Biotechnology</i> , 2011 , 29, 307-13	15.1	32
117	Selective and Rapid Room Temperature Detection of H2S Using Gold Nanoparticle Chain Arrays. <i>Electroanalysis</i> , 2011 , 23, 2623-2628	3	32

(1993-2005)

116	Improved degradation of organophosphorus nerve agents and p-nitrophenol by Pseudomonas putida JS444 with surface-expressed organophosphorus hydrolase. <i>Biotechnology Progress</i> , 2005 , 21, 678-81	2.8	32	
115	Comparison of a reporter assay and immunomagnetic separation real-time reverse transcription-PCR for the detection of enteroviruses in seeded environmental water samples. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2338-40	4.8	32	
114	Detoxification of organophosphate nerve agents by immobilized dual functional biocatalysts in a cellulose hollow fiber bioreactor. <i>Biotechnology and Bioengineering</i> , 2005 , 91, 379-86	4.9	32	
113	Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis. <i>Chemical Communications</i> , 2014 , 50, 1423-5	5.8	31	
112	Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. <i>Biotechnology and Bioengineering</i> , 2004 , 85, 706-13	4.9	31	
111	Customizable Biopolymers for Heavy Metal Remediation. <i>Journal of Nanoparticle Research</i> , 2005 , 7, 517	′-<u>5</u>2 3	31	
110	Size-modulated synergy of cellulase clustering for enhanced cellulose hydrolysis. <i>Biotechnology Journal</i> , 2013 , 8, 257-61	5.6	30	
109	Presentation of functional organophosphorus hydrolase fusions on the surface of Escherichia coli by the AIDA-I autotransporter pathway. <i>Biotechnology and Bioengineering</i> , 2008 , 99, 485-90	4.9	30	
108	Proteome changes after metabolic engineering to enhance aerobic mineralization of cis-1,2-dichloroethylene. <i>Journal of Proteome Research</i> , 2006 , 5, 1388-97	5.6	30	
107	Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels. <i>Acta Biomaterialia</i> , 2017 , 56, 80-90	10.8	29	
106	Affinity precipitation of a monoclonal antibody from an industrial harvest feedstock using an ELP-Z stimuli responsive biopolymer. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 1595-603	4.9	29	
105	Real-time molecular methods to detect infectious viruses. <i>Seminars in Cell and Developmental Biology</i> , 2009 , 20, 49-54	7.5	29	
104	Durability of hydrophilic and antimicrobial zeolite coatings under water immersion. <i>AICHE Journal</i> , 2006 , 52, 1157-1161	3.6	29	
103	Biosensor for Direct Determination of Fenitrothion and EPN Using Recombinant Pseudomonas putida JS444 with Surface Expressed Organophosphorus Hydrolase. 1. Modified Clark Oxygen Electrode. <i>Sensors</i> , 2006 , 6, 466-472	3.8	29	
102	Microbial biosensor for p-nitrophenol using Moraxella sp Analytica Chimica Acta, 2002, 470, 79-86	6.6	29	
101	A Microbial Biosensor for p-Nitrophenol Using Arthrobacter Sp <i>Electroanalysis</i> , 2003 , 15, 1160-1164	3	29	
100	Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. <i>Biotechnology Progress</i> , 2003 , 19, 1812-5	2.8	29	
99	Construction and characterization of a novel cross-regulation system for regulating cloned gene expression in Escherichia coli. <i>Gene</i> , 1993 , 130, 15-22	3.8	29	

98	Label-free detection of cupric ions and histidine-tagged proteins using single poly(pyrrole)-NTA chelator conducting polymer nanotube chemiresistive sensor. <i>Biosensors and Bioelectronics</i> , 2009 , 24, 1451-5	11.8	28
97	Environmental biotechnology: Challenges and opportunities for chemical engineers. <i>AICHE Journal</i> , 2005 , 51, 690-695	3.6	27
96	Heavy metal removal by novel CBD-EC20 sorbents immobilized on cellulose. <i>Biomacromolecules</i> , 2002 , 3, 462-5	6.9	27
95	Functional assembly and characterization of a modular xylanosome for hemicellulose hydrolysis in yeast. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 275-85	4.9	26
94	Detection of hepatitis a virus by using a combined cell culture-molecular beacon assay. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 2239-43	4.8	26
93	An immunoassay for atrazine using tunable immunosorbent. <i>Analytical Biochemistry</i> , 2003 , 322, 251-6	3.1	26
92	Enzyme biosensor for determination of organophosphates. <i>Field Analytical Chemistry and Technology</i> , 1998 , 2, 363-369		25
91	Cadmium removal from contaminated soil by thermally responsive elastin (ELPEC20) biopolymers. <i>Biotechnology and Bioengineering</i> , 2007 , 98, 349-55	4.9	25
90	HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis. <i>Chemical Communications</i> , 2016 , 52, 6701-4	5.8	25
89	Affinity purification of plasmid DNA by temperature-triggered precipitation. <i>Biotechnology and Bioengineering</i> , 2004 , 85, 293-7	4.9	24
88	High-throughput screening for the development of a monoclonal antibody affinity precipitation step using ELP-z stimuli responsive biopolymers. <i>Biotechnology and Bioengineering</i> , 2013 , 110, 2664-76	4.9	23
87	Engineering a high-affinity scaffold for non-chromatographic protein purification via intein-mediated cleavage. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 2829-35	4.9	23
86	Cell surface display of functional macromolecule fusions on Escherichia coli for development of an autofluorescent whole-cell biocatalyst. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	23
85	Halo-tag mediated self-labeling of fluorescent proteins to molecular beacons for nucleic acid detection. <i>Chemical Communications</i> , 2014 , 50, 13735-8	5.8	21
84	Improvement in recombinant protein production in ppGpp-deficient Escherichia coli. <i>Biotechnology and Bioengineering</i> , 1997 , 53, 379-86	4.9	21
83	Controlled assembly of multi-segment nanowires by histidine-tagged peptides. <i>Nanotechnology</i> , 2006 , 17, 3375-9	3.4	21
82	Towards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development. <i>Sensors</i> , 2003 , 3, 119-127	3.8	21
81	One-step affinity capture and precipitation for improved purification of an industrial monoclonal antibody using Z-ELP functionalized nanocages. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 423-432	4.9	20

80	Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli. <i>Biotechnology and Bioengineering</i> , 2010 , 105, 780-5	4.9	20
79	Development of an autofluorescent whole-cell biocatalyst by displaying dual functional moieties on Escherichia coli cell surfaces and construction of a coculture with organophosphate-mineralizing activity. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 7733-9	4.8	20
78	Modular Hepatitis B Virus-like Particle Platform for Biosensing and Drug Delivery. <i>ACS Nano</i> , 2020 , 14, 12642-12651	16.7	20
77	Protein Nanoparticles as Multifunctional Biocatalysts and Health Assessment Sensors. <i>Current Opinion in Chemical Engineering</i> , 2016 , 13, 109-118	5.4	19
76	Simultaneous degradation of organophosphates and 4-substituted phenols by Stenotrophomonas species LZ-1 with surface-displayed organophosphorus hydrolase. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 6171-7	5.7	19
75	In Situ Fabrication of Single Poly(methyl pyrrole) Nanowire. <i>Electroanalysis</i> , 2007 , 19, 793-797	3	18
74	Visualization and detection of infectious coxsackievirus replication using a combined cell culture-molecular beacon assay. <i>Applied and Environmental Microbiology</i> , 2005 , 71, 8397-401	4.8	18
73	Biodetoxification of coumaphos insecticide using immobilizedEscherichia coli expressing organophosphorus hydrolase enzyme on cell surface. <i>Biotechnology and Bioprocess Engineering</i> , 2000 , 5, 436-440	3.1	18
72	Molecular design of expression systems: comparison of different control configurations using molecular mechanism models. <i>Biotechnology and Bioengineering</i> , 1991 , 38, 679-87	4.9	18
71	Ligand-Induced Cross-Linking of Z-Elastin-like Polypeptide-Functionalized E2 Protein Nanoparticles for Enhanced Affinity Precipitation of Antibodies. <i>Biomacromolecules</i> , 2017 , 18, 1654-1659	6.9	17
70	Detection of infective poliovirus by a simple, rapid, and sensitive flow cytometry method based on fluorescence resonance energy transfer technology. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 584-8	4.8	17
69	Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli. <i>Electrophoresis</i> , 1999 , 20, 798-805	3.6	17
68	Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. <i>Biotechnology Progress</i> , 2012 , 28, 654-61	2.8	16
67	Affinity purification of plasmid DNA by temperature-triggered precipitation. <i>Nature Protocols</i> , 2007 , 2, 1263-8	18.8	16
66	Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 605-8	4.9	15
65	Tuning Electrical and Optoelectronic Properties of Single Cadmium Telluride Nanoribbon. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 9202-9208	3.8	15
64	Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases. <i>ChemBioChem</i> , 2019 , 20, 1394-1399	3.8	13
63	Exploiting dCas9 fusion proteins for dynamic assembly of synthetic metabolons. <i>Chemical Communications</i> , 2019 , 55, 8219-8222	5.8	13

62	Development of an ELP-Z based mAb affinity precipitation process using scaled-down filtration techniques. <i>Journal of Biotechnology</i> , 2014 , 192 Pt A, 11-9	3.7	13
61	Factors influencing parathion degradation by recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. <i>Biotechnology Progress</i> , 1998 , 14, 275-8	2.8	13
60	Communication to the editor. Application of the cross-regulation system as a metabolic switch. <i>Biotechnology and Bioengineering</i> , 1994 , 43, 1190-3	4.9	13
59	Quantitative assessment of in vivo HIV protease activity using genetically engineered QD-based FRET probes. <i>Biotechnology and Bioengineering</i> , 2014 , 111, 1082-7	4.9	12
58	Bioengineering strategies to generate artificial protein complexes. <i>Biotechnology and Bioengineering</i> , 2015 , 112, 1495-505	4.9	12
57	A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains. <i>Journal of Biotechnology</i> , 2016 , 234, 27-34	3.7	12
56	SpyTag/SpyCatcher Functionalization of E2 Nanocages with Stimuli-Responsive Z-ELP Affinity Domains for Tunable Monoclonal Antibody Binding and Precipitation Properties. <i>Bioconjugate Chemistry</i> , 2018 , 29, 3113-3120	6.3	11
55	Enzyme mediated synthesis of phytochelatin-capped CdS nanocrystals. <i>Applied Physics Letters</i> , 2010 , 97, 123703	3.4	11
54	Detection of murine norovirus-1 by using TAT peptide-delivered molecular beacons. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5517-20	4.8	11
53	Outrunning Nature: Directed Evolution of Superior Biocatalysts. <i>Journal of Chemical Education</i> , 2004 , 81, 126	2.4	11
52	Controlled Epidermal Growth Factor Receptor Ligand Display on Cancer Suicide Enzymes via Unnatural Amino Acid Engineering for Enhanced Intracellular Delivery in Breast Cancer Cells. <i>Bioconjugate Chemistry</i> , 2019 , 30, 432-442	6.3	11
51	Simultaneous detection of infectious human echoviruses and adenoviruses by an in situ nuclease-resistant molecular beacon-based assay. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 1584-8	4.8	10
50	A tubulin-based fluorescent polarization assay for paclitaxel. <i>Analytical Biochemistry</i> , 2003 , 321, 44-9	3.1	10
49	Electrochemical and optical bioassays of nerve agents based on the organophosphorus-hydrolase mediated growth of cupric ferrocyanide nanoparticles. <i>Electrochemistry Communications</i> , 2005 , 7, 1371	-15374	10
48	Effects of FIS overexpression on cell growth, rRNA synthesis, and ribosome content in Escherichia coli. <i>Biotechnology Progress</i> , 2001 , 17, 252-7	2.8	10
47	High-efficiency affinity precipitation of multiple industrial mAbs and Fc-fusion proteins from cell culture harvests using Z-ELP-E2 nanocages. <i>Biotechnology and Bioengineering</i> , 2018 , 115, 2039-2047	4.9	9
46	Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA. <i>Applied Microbiology and Biotechnology</i> , 2008 , 79, 511-8	5.7	9
45	Process characterization of a novel cross-regulation system for cloned protein production in Escherichia coli. <i>Biotechnology Progress</i> , 1995 , 11, 397-402	2.8	9

(2019-2020)

44	Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. <i>Bioconjugate Chemistry</i> , 2020 , 31, 2272-2282	6.3	9
43	In vitro methanol production from methyl coenzyme M using the Methanosarcina barkeri MtaABC protein complex. <i>Biotechnology Progress</i> , 2017 , 33, 1243-1249	2.8	8
42	DNA-guided assembly of a five-component enzyme cascade for enhanced conversion of cellulose to gluconic acid and HO. <i>Journal of Biotechnology</i> , 2017 , 263, 30-35	3.7	8
41	Fluorescent protein-based molecular beacons by zinc finger protein-guided assembly. <i>Biotechnology and Bioengineering</i> , 2015 , 112, 236-41	4.9	8
40	Biological Assembly of Modular Protein Building Blocks as Sensing, Delivery, and Therapeutic Agents. <i>Annual Review of Chemical and Biomolecular Engineering</i> , 2020 , 11, 35-62	8.9	8
39	Use of flow cytometry for rapid, quantitative detection of poliovirus-infected cells via TAT peptide-delivered molecular beacons. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 696-700	4.8	8
38	Biologically Assembled Nanobiocatalysts. <i>Topics in Catalysis</i> , 2012 , 55, 1138-1145	2.3	8
37	Engineering a recyclable elastin-like polypeptide capturing scaffold for non-chromatographic protein purification. <i>Biotechnology Progress</i> , 2013 , 29, 968-71	2.8	8
36	Elastin-calmodulin scaffold for protein microarray fabrication. <i>Langmuir</i> , 2007 , 23, 2277-9	4	8
35	Genetically Engineered Bacterial Outer Membrane Vesicles with Expressed Nanoluciferase Reporter for Bioluminescence Kinetic Modeling through Noninvasive Imaging <i>ACS Applied Bio Materials</i> , 2019 , 2, 5608-5615	4.1	8
34	Bactericidal activity of elastin-like polypeptide biopolymer with polyhistidine domain and silver. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 119, 66-70	6	7
33	Synthesis of chalcogenide ternary and quaternary nanotubes through directed compositional alterations of bacterial AsB nanotubes. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10277		7
32	Innovative bioreactors. Current Opinion in Biotechnology, 1997, 8, 165-8	11.4	7
31	Genetically engineered bio-nanoparticles with co-expressed enzyme reporter and recognition element for IgG immunoassay. <i>Sensors and Actuators Reports</i> , 2019 , 1, 100003	4.7	7
30	Synthetic biology approaches for targeted protein degradation. <i>Biotechnology Advances</i> , 2019 , 37, 1074	146 .8	6
29	Outer membrane vesicles (OMVs) enabled bio-applications: A critical review. <i>Biotechnology and Bioengineering</i> , 2022 , 119, 34-47	4.9	6
28	Rapid Quantification of Monoclonal Antibody Titer in Cell Culture Harvests by Antibody-Induced Z-ELP-E2 Nanoparticle Cross-Linking. <i>Analytical Chemistry</i> , 2018 , 90, 14447-14452	7.8	6
27	Artificial scaffolds for enhanced biocatalysis. <i>Methods in Enzymology</i> , 2019 , 617, 363-383	1.7	5

26	Induced prodrug activation by conditional protein degradation. <i>Journal of Biotechnology</i> , 2017 , 260, 62	- 696 7	5
25	Expression, immobilization, and enzymatic characterization of cellulose-binding domain-organophosphorus hydrolase fusion enzymes 2000 , 69, 591		5
24	Elevated Fis expression enhances recombinant protein production in Escherichia coli. <i>Biotechnology and Bioengineering</i> , 1997 , 56, 138-44	4.9	4
23	Control of the Yeast Mating Pathway by Reconstitution of Functional Factor Using Split Intein-Catalyzed Reactions. <i>ACS Synthetic Biology</i> , 2017 , 6, 1453-1460	5.7	3
22	Prospective of Conducting Polymer Nanowire for Gas Sensing Application to its Physical Scaling. <i>Advanced Materials Research</i> , 2012 , 584, 224-228	0.5	3
21	Incorporation of Endosomolytic Peptides with Varying Disruption Mechanisms into EGFR-Targeted Protein Conjugates: The Effect on Intracellular Protein Delivery and EGFR Specificity in Breast Cancer Cells <i>Molecular Pharmaceutics</i> , 2022 ,	5.6	3
20	A modular approach for dCas9-mediated enzyme cascading orthogonal bioconjugation. <i>Chemical Communications</i> , 2020 , 56, 11426-11428	5.8	3
19	Engineering a Blue Light Inducible SpyTag System (BLISS). <i>Journal of the American Chemical Society</i> , 2021 , 143, 8572-8577	16.4	3
18	A fluorescence resonance energy transfer-based fluorometer assay for screening anti-coxsackievirus B3 compounds. <i>Journal of Virological Methods</i> , 2011 , 171, 176-82	2.6	2
17	Design of expression systems for metabolic engineering: coordinated synthesis and degradation of glycogen. <i>Biotechnology and Bioengineering</i> , 1997 , 55, 419-26	4.9	2
16	Biological Detoxification of Organophosphate Pesticides. ACS Symposium Series, 2003, 25-36	0.4	2
15	Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation. <i>Biotechnology Progress</i> , 2021 , 37, e3190	2.8	2
14	Engineering bionanoparticles for improved biosensing and bioimaging. <i>Current Opinion in Biotechnology</i> , 2021 , 71, 41-48	11.4	2
13	Remote Biosensor for In-Situ MOnitoring of Organophosphate Nerve Agents 1999 , 11, 866		2
12	Tunable modulation of antibody-antigen interaction by protease cleavage of protein M. <i>Biotechnology and Bioengineering</i> , 2019 , 116, 2834-2842	4.9	1
11	Engineering protein modules for diagnostic applications. <i>Current Opinion in Chemical Engineering</i> , 2013 , 2, 416-424	5.4	1
10	Enhanced Bioaccumulation of Heavy Metals by Bacterial Cells with Surface-Displayed Synthetic Phytochelatins. <i>ACS Symposium Series</i> , 2002 , 411-418	0.4	1
9	Synthesis of gold nanostructures using glycine as the reducing agent. <i>Nanotechnology</i> , 2020 , 31, 45560	13.4	1

LIST OF PUBLICATIONS

8	Controlling metabolic flux by toehold-mediated strand displacement. <i>Current Opinion in Biotechnology</i> , 2020 , 66, 150-157	11.4	1
7	Organophosphorus Hydrolase-Based Amperometric Sensor: Modulation of Sensitivity and Substrate Selectivity 2002 , 14, 273		1
6	Deciphering the Design Rules of Toehold-Gated sgRNA for Conditional Activation of Gene Expression and Protein Degradation in Mammalian Cells <i>ACS Synthetic Biology</i> , 2022 , 11, 397-405	5.7	О
5	Conditional Protein Rescue by Binding-Induced Protective Shielding. ACS Synthetic Biology, 2020, 9, 20	639 ,2 64	17 ₀
4	A tribute to Professor Jay Bailey: A pioneer in biochemical engineering. AICHE Journal, 2018, 64, 4179	-41381	О
3	Proteome analysis of factor for inversion stimulation (Fis) overproduction in Escherichia coli218-225		
2	Recent Advances in Cell Surface Display Technologies for Directed Protein Evolution 2021 , 81-103		
1	Strategies for Multienzyme Assemblies. <i>Methods in Molecular Biology</i> , 2022 , 113-131	1.4	