S Chandramohan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5451905/publications.pdf

Version: 2024-02-01

687363 713466 21 515 13 21 citations h-index g-index papers 22 22 22 942 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Band gap engineering in PbS nanostructured thin films from near-infrared down to visible range by in situ Cd-doping. Journal of Alloys and Compounds, 2010, 495, 234-237.	5.5	72
2	Work-function-tuned multilayer graphene as current spreading electrode in blue light-emitting diodes. Applied Physics Letters, 2012, 100, .	3.3	53
3	High-energy heavy-ion induced physical and surface-chemical modifications in polycrystalline cadmium sulfide thin films. Applied Physics A: Materials Science and Processing, 2009, 94, 703-714.	2.3	48
4	The role of graphene formed on silver nanowire transparent conductive electrode in ultra-violet light emitting diodes. Scientific Reports, 2016, 6, 29464.	3.3	40
5	Tailored CVD graphene coating as a transparent and flexible gas barrier. Scientific Reports, 2016, 6, 24143.	3.3	38
6	Impact of Interlayer Processing Conditions on the Performance of GaN Light-Emitting Diode with Specific NiO _{<i>x</i>} /Graphene Electrode. ACS Applied Materials & Interfaces, 2013, 5, 958-964.	8.0	37
7	Trap-state-assisted white light emission from a CdSe nanocrystal integrated hybrid light-emitting diode. Optics Letters, 2011, 36, 802.	3.3	33
8	Rapid wafer-scale fabrication with layer-by-layer thickness control of atomically thin MoS2 films using gas-phase chemical vapor deposition. APL Materials, 2019, 7, .	5.1	31
9	Optical properties of swift ion beam irradiated CdTe thin films. Thin Solid Films, 2008, 516, 5508-5512.	1.8	24
10	Fabrication and chargeâ€transfer characteristics of CdS QDs sensitized vertically grown flowerâ€like ZnO solar cells with CdSe cosensitizers. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 474-479.	1.8	23
11	Performance evaluation of GaN light-emitting diodes using transferred graphene as current spreading layer. Journal of Applied Physics, 2014, 115, 054503.	2.5	22
12	Improved photovoltaic effect in graphene/silicon solar cell using MoO3/Ag/MoO3 multilayer coating. Materials Letters, 2019, 246, 103-106.	2.6	17
13	Large-Scale Atomically Thin Monolayer 2H-MoS ₂ Field-Effect Transistors. ACS Applied Nano Materials, 2020, 3, 7371-7376.	5.0	14
14	Barrier-assisted vapor phase CVD of large-area MoS ₂ monolayers with high spatial homogeneity. Nanoscale Advances, 2020, 2, 4106-4116.	4.6	13
15	Self-Assembled Periodic Silica Nanosphere Arrays on Wet-Etched Patterned Sapphire Substrate for a High-Light-Extraction-Efficiency Light-Emitting Diode. IEEE Electron Device Letters, 2011, 32, 527-529.	3.9	9
16	Enhanced light output power of GaN-based light-emitting diodes by nano-rough indium tin oxide film using ZnO nanoparticles. Journal of Applied Physics, 2011, 109, 093116.	2.5	9
17	A comparison of various surface charge transfer hole doping of graphene grown by chemical vapour deposition. Applied Surface Science, 2017, 418, 258-263.	6.1	9
18	Oxygen-Driven Growth Regulation and Defect Passivation in Chemical Vapor Deposited MoS ₂ Monolayers. Crystal Growth and Design, 2021, 21, 6793-6801.	3.0	9

#	Article	IF	CITATIONS
19	Observation of dopant-dependent efficiency in chemically doped graphene/silicon solar cells and prospects for MoOx to overcome the stability and efficiency limits. Journal of Applied Physics, 2021, 129, .	2.5	5
20	Effect of growth temperature on the morphology control and optical behavior of monolayer MoS2 on SiO2 substrate. Journal of Materials Science: Materials in Electronics, 2022, 33, 9549-9557.	2.2	5
21	Growth Behavior, nucleation control and excellent optical properties of atomically thin WS2 thin films processed via Gas-phase chemical vapor deposition. Applied Surface Science, 2021, 568, 150908.	6.1	4