
## Paul Lee Choon Keat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5451584/publications.pdf Version: 2024-02-01



<u>ΡΛΙΙΙ Ι ΕΕ CHOON ΚΕΛΤ</u>

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A study of picosecond laser–solid interactions up to 1019 W cmâ^'2. Physics of Plasmas, 1997, 4, 447-457.                                                                                            | 1.9 | 583       |
| 2  | Efficient Extreme UV Harmonics Generated from Picosecond Laser Pulse Interactions with Solid<br>Targets. Physical Review Letters, 1996, 76, 1832-1835.                                               | 7.8 | 302       |
| 3  | Plasma Ion Emission from High Intensity Picosecond Laser Pulse Interactions with Solid Targets.<br>Physical Review Letters, 1994, 73, 1801-1804.                                                     | 7.8 | 191       |
| 4  | High rep rate high performance plasma focus as a powerful radiation source. IEEE Transactions on<br>Plasma Science, 1998, 26, 1119-1126.                                                             | 1.3 | 175       |
| 5  | Neutron production from picosecond laser irradiation of deuterated targets at intensities of. Plasma<br>Physics and Controlled Fusion, 1998, 40, 175-182.                                            | 2.1 | 148       |
| 6  | Plasma Formation on the Front and Rear of Plastic Targets due to High-Intensity Laser-Generated Fast<br>Electrons. Physical Review Letters, 1998, 81, 999-1002.                                      | 7.8 | 127       |
| 7  | Deposition of titanium nitride thin films on stainless steel—AISI 304 substrates using a plasma focus device. Surface and Coatings Technology, 2003, 173, 276-284.                                   | 4.8 | 113       |
| 8  | Room temperature deposition of titanium carbide thin films using dense plasma focus device. Surface<br>and Coatings Technology, 2001, 138, 159-165.                                                  | 4.8 | 100       |
| 9  | Oxygen rich <i>p</i> -type ZnO thin films using wet chemical route with enhanced carrier concentration by temperature-dependent tuning of acceptor defects. Journal of Applied Physics, 2011, 110, . | 2.5 | 89        |
| 10 | Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation.<br>Progress in Natural Science: Materials International, 2014, 24, 142-149.                          | 4.4 | 87        |
| 11 | Soft X-ray Optimization Studies on a Dense Plasma Focus Device Operated in Neon and Argon in Repetitive Mode. IEEE Transactions on Plasma Science, 2004, 32, 2227-2235.                              | 1.3 | 85        |
| 12 | Effect of energetic ion irradiation on CdI2 films. Journal of Applied Physics, 2004, 95, 7725-7730.                                                                                                  | 2.5 | 84        |
| 13 | Iridescence of a shell of mollusk Haliotis Glabra. Optics Express, 2004, 12, 4847.                                                                                                                   | 3.4 | 84        |
| 14 | Optimization of the high pressure operation regime for enhanced neutron yield in a plasma focus device. Plasma Sources Science and Technology, 2005, 14, 12-18.                                      | 3.1 | 81        |
| 15 | Operation of nx2 dense plasma focus device with argon filling as a possible radiation source for micro-machining. IEEE Transactions on Plasma Science, 2002, 30, 1331-1338.                          | 1.3 | 79        |
| 16 | Optimizing UNU/ICTP PFF Plasma Focus for Neon Soft X-ray Operation. IEEE Transactions on Plasma Science, 2009, 37, 1276-1282.                                                                        | 1.3 | 71        |
| 17 | Effect of insulator sleeve length on soft x-ray emission from a neon-filled plasma focus device.<br>Plasma Sources Science and Technology, 2004, 13, 569-575.                                        | 3.1 | 69        |
| 18 | Electron lithography using a compact plasma focus. Plasma Sources Science and Technology, 1997, 6, 343-348.                                                                                          | 3.1 | 68        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Powerful Soft X-ray Source for X-ray Lithography Based on Plasma Focusing. Physica Scripta, 1998,<br>57, 488-494.                                                                                    | 2.5 | 68        |
| 20 | Synthesis of nanocrystalline multiphase titanium oxycarbide (TiCxOy) thin films by UNU/ICTP and NX2 plasma focus devices. Applied Physics A: Materials Science and Processing, 2008, 90, 669-677.      | 2.3 | 66        |
| 21 | Computing plasma focus pinch current from total current measurement. Applied Physics Letters, 2008, 92, 111501.                                                                                        | 3.3 | 65        |
| 22 | Quenching of surface traps in Mn doped ZnO thin films for enhanced optical transparency. Applied<br>Surface Science, 2011, 258, 890-897.                                                               | 6.1 | 65        |
| 23 | Measurements of the hole boring velocity from Doppler shifted harmonic emission from solid targets. Physics of Plasmas, 1996, 3, 3242-3244.                                                            | 1.9 | 61        |
| 24 | Spectral study of the electron beam emitted from a 3 kJ plasma focus. Plasma Sources Science and<br>Technology, 2005, 14, 549-560.                                                                     | 3.1 | 60        |
| 25 | Numerical experiments on plasma focus pinch current limitation. Plasma Physics and Controlled Fusion, 2008, 50, 065012.                                                                                | 2.1 | 60        |
| 26 | Optical and x-ray observations of carbon and aluminium fibreZ-pinch plasmas. Plasma Physics and<br>Controlled Fusion, 1997, 39, 1-25.                                                                  | 2.1 | 55        |
| 27 | Nano-structured Fe thin film deposition using plasma focus device. Applied Surface Science, 2006, 253, 1611-1615.                                                                                      | 6.1 | 54        |
| 28 | Compact sub-kilojoule range fast miniature plasma focus as portable neutron source. Plasma Sources<br>Science and Technology, 2008, 17, 045020.                                                        | 3.1 | 54        |
| 29 | Structural, compositional and magnetic characterization of bulk V2O5 doped ZnO system. Applied Surface Science, 2010, 256, 2309-2314.                                                                  | 6.1 | 54        |
| 30 | Numerical experiments on plasma focus neon soft x-ray scaling. Plasma Physics and Controlled Fusion, 2009, 51, 105013.                                                                                 | 2.1 | 53        |
| 31 | Alteration of Mn exchange coupling by oxygen interstitials in ZnO:Mn thin films. Applied Surface Science, 2012, 258, 6373-6378.                                                                        | 6.1 | 53        |
| 32 | Effect of deposition parameters on morphology and size of FeCo nanoparticles synthesized by pulsed laser ablation deposition. Applied Surface Science, 2006, 252, 2806-2816.                           | 6.1 | 52        |
| 33 | Nano-phase titanium dioxide thin film deposited by repetitive plasma focus: Ion irradiation and annealing based phase transformation and agglomeration. Applied Surface Science, 2008, 255, 2932-2941. | 6.1 | 52        |
| 34 | Structural, optical and magnetic properties of (ZnO)1â^'x(MnO2)x thin films deposited at room temperature. Applied Surface Science, 2008, 254, 7285-7289.                                              | 6.1 | 51        |
| 35 | Current sheath curvature correlation with the neon soft x-ray emission from plasma focus device.<br>Plasma Sources Science and Technology, 2005, 14, 368-374.                                          | 3.1 | 46        |
| 36 | Effect of Anode Designs on Ion Emission Characteristics of a Plasma Focus Device. Japanese Journal of<br>Applied Physics, 2007, 46, 3039-3044.                                                         | 1.5 | 45        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Soft X-ray Imaging using a Neon Filled Plasma Focus X-ray Source. Journal of Fusion Energy, 2004, 23, 49-53.                                                                                 | 1.2 | 44        |
| 38 | Shadowgraphic Studies of DLC Film Deposition Process in Dense Plasma Focus Device. IEEE Transactions on Plasma Science, 2004, 32, 448-455.                                                   | 1.3 | 42        |
| 39 | Synthesis of FeCo nanoparticles by pulsed laser deposition in a diffusion cloud chamber. Applied Surface Science, 2008, 254, 1909-1914.                                                      | 6.1 | 41        |
| 40 | Coherence and bandwidth measurements of harmonics generated from solid surfaces irradiated by intense picosecond laser pulses. Physical Review A, 1996, 54, 1597-1603.                       | 2.5 | 40        |
| 41 | An improved radiative plasma focus model calibrated for neon-filled NX2 using a tapered anode.<br>Plasma Sources Science and Technology, 2007, 16, 116-123.                                  | 3.1 | 40        |
| 42 | Effect of argon ion irradiation on Sb2Te3 films in a dense plasma focus device. Materials Research<br>Bulletin, 2000, 35, 477-486.                                                           | 5.2 | 39        |
| 43 | On the plume splitting of pulsed laser ablated Fe and Al plasmas. Physics of Plasmas, 2010, 17, .                                                                                            | 1.9 | 38        |
| 44 | Energetic ion irradiation of American diamond in a plasma focus device and characterization of irradiated material. Nuclear Instruments & Methods in Physics Research B, 2006, 243, 113-118. | 1.4 | 37        |
| 45 | Optimization of a plasma focus device as an electron beam source for thin film deposition. Plasma<br>Sources Science and Technology, 2007, 16, 250-256.                                      | 3.1 | 37        |
| 46 | Pinching evidences in a miniature plasma focus with fast pseudospark switch. Plasma Sources Science and Technology, 2006, 15, 614-619.                                                       | 3.1 | 36        |
| 47 | Characteristics of FeCo nano-particles synthesized using plasma focus. Journal Physics D: Applied Physics, 2006, 39, 2212-2219.                                                              | 2.8 | 35        |
| 48 | Measurement and Processing of Fast Pulsed Discharge Current in Plasma Focus Machines. Journal of<br>Fusion Energy, 2012, 31, 198-204.                                                        | 1.2 | 35        |
| 49 | A Magnetic Electron Analyzer for Plasma Focus Electron Energy Distribution Studies. Journal of Fusion Energy, 2006, 25, 57-66.                                                               | 1.2 | 34        |
| 50 | Observation of plasma confinement in picosecond laser-plasma interactions. Physical Review E, 1993,<br>48, 2087-2093.                                                                        | 2.1 | 33        |
| 51 | Study of a Chemically Amplified Resist for X-Ray Lithography by Fourier Transform Infrared Spectroscopy. Applied Spectroscopy, 2004, 58, 1288-1294.                                          | 2.2 | 33        |
| 52 | Experimental study of neutron emission characteristics in a compact sub-kilojoule range miniature plasma focus device. Plasma Physics and Controlled Fusion, 2009, 51, 075008.               | 2.1 | 33        |
| 53 | Comparison of sensitivities of Moiré deflectometry and interferometry to measure electron densities inz-pinch plasmas. Journal Physics D: Applied Physics, 2007, 40, 2026-2032.              | 2.8 | 32        |
| 54 | Dense plasma focus ion-based titanium nitride coating on titanium. Nuclear Instruments & Methods in<br>Physics Research B, 2009, 267, 1911-1917.                                             | 1.4 | 32        |

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | FePt nanoparticle formation with lower phase transition temperature by single shot plasma focus ion irradiation. Journal Physics D: Applied Physics, 2008, 41, 135213.                                                                         | 2.8 | 31        |
| 56 | High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus.<br>Applied Surface Science, 2008, 255, 2461-2465.                                                                                       | 6.1 | 30        |
| 57 | Effect of cathode structure on neutron yield performance of a miniature plasma focus device. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2568-2571.                                                     | 2.1 | 30        |
| 58 | Drive Parameter as a Design Consideration for Mather and Filippov Types of Plasma Focus. IEEE<br>Transactions on Plasma Science, 2006, 34, 2356-2362.                                                                                          | 1.3 | 28        |
| 59 | High Performance High Repetition Rate Miniature Plasma Focus Device: Record Time Averaged Neutron<br>Yield at 200ÂJ with Enhanced Reproducibility. Journal of Fusion Energy, 2013, 32, 2-10.                                                   | 1.2 | 28        |
| 60 | Lowering of L10 phase transition temperature of FePt thin films by single shot H+ ion exposure using plasma focus device. Thin Solid Films, 2009, 517, 2753-2757.                                                                              | 1.8 | 27        |
| 61 | Short-Lived PET Radioisotope Production in a Small Plasma Focus Device. IEEE Transactions on Plasma<br>Science, 2010, 38, 3393-3397.                                                                                                           | 1.3 | 27        |
| 62 | Correlation of Measured Soft X-Ray Pulses With Modeled Dynamics of the Plasma Focus. IEEE<br>Transactions on Plasma Science, 2011, 39, 3196-3202.                                                                                              | 1.3 | 26        |
| 63 | Nitrogen doping in pulsed laser deposited ZnO thin films using dense plasma focus. Applied Surface<br>Science, 2011, 257, 1979-1985.                                                                                                           | 6.1 | 26        |
| 64 | Exciting Dilute Magnetic Semiconductor: Copper-Doped ZnO. Journal of Superconductivity and Novel<br>Magnetism, 2013, 26, 187-195.                                                                                                              | 1.8 | 26        |
| 65 | Optimization of neon soft X-rays emission from 200 J fast miniature dense plasma focus device: A<br>potential source for soft X-ray lithography. Physics Letters, Section A: General, Atomic and Solid<br>State Physics, 2013, 377, 1290-1296. | 2.1 | 26        |
| 66 | Nuclear activation measurements of High energy deuterons from a small plasma focus. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 851-855.                                                                | 2.1 | 25        |
| 67 | Characterization of chemically amplified resist for X-ray lithography by Fourier transform infrared spectroscopy. Thin Solid Films, 2006, 504, 113-116.                                                                                        | 1.8 | 23        |
| 68 | Effects of target–substrate geometry and ambient gas pressure on FePt nanoparticles synthesized by pulsed laser deposition. Applied Surface Science, 2009, 255, 4372-4377.                                                                     | 6.1 | 23        |
| 69 | Miniature plasma focus as a novel device for synthesis of soft magnetic FeCo thin films. Physics<br>Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 1043-1048.                                                         | 2.1 | 23        |
| 70 | Magnetic spectrometry of high energy deuteron beams from pulsed plasma system. Plasma Physics and<br>Controlled Fusion, 2010, 52, 085007.                                                                                                      | 2.1 | 23        |
| 71 | Magnetic Probe Measurements in INTI Plasma Focus to Determine Dependence of Axial Speed with Pressure in Neon. Journal of Fusion Energy, 2012, 31, 411-417.                                                                                    | 1.2 | 23        |
| 72 | Neon soft x-ray emission studies from the UNU-ICTP plasma focus operated with longer than optimal anode length. Plasma Sources Science and Technology, 2007, 16, 785-790.                                                                      | 3.1 | 22        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | SYNTHESIS OF ZIRCONIUM OXYNITRIDE (ZrON) NANOCOMPOSITE FILMS ON ZIRCONIUM SUBSTRATE BY DENSE PLASMA FOCUS DEVICE. International Journal of Modern Physics B, 2008, 22, 3941-3955.                                          | 2.0 | 22        |
| 74 | Miniature Plasma Focus Device as a Compact Hard X-Ray Source for Fast Radiography Applications. IEEE<br>Transactions on Plasma Science, 2010, 38, 652-657.                                                                 | 1.3 | 22        |
| 75 | Damage Study of Irradiated Tungsten using fast focus mode of a 2.2ÂkJ plasma focus. Vacuum, 2017, 144,<br>14-20.                                                                                                           | 3.5 | 22        |
| 76 | Order of magnitude enhancement in x-ray yield at low pressure deuterium-krypton admixture operation in miniature plasma focus device. Applied Physics Letters, 2008, 92, .                                                 | 3.3 | 21        |
| 77 | Investigation of plume expansion dynamics and estimation of ablation parameters of laser ablated Fe<br>plasma. Journal Physics D: Applied Physics, 2009, 42, 135504.                                                       | 2.8 | 21        |
| 78 | Comparison of Measured Neutron Yield Versus Pressure Curves for FMPF-3, NX2 and NX3 Plasma Focus<br>Machines Against Computed Results Using the Lee Model Code. Journal of Fusion Energy, 2015, 34,<br>474-479.            | 1.2 | 21        |
| 79 | Laser irradiation effects on gold. Laser Physics, 2007, 17, 1382-1388.                                                                                                                                                     | 1.2 | 20        |
| 80 | Nanostructuring of FePt thin films by plasma focus device: pulsed ion irradiation dependent phase<br>transition and magnetic properties. Applied Physics A: Materials Science and Processing, 2009, 96,<br>1027-1033.      | 2.3 | 19        |
| 81 | Enhanced and reproducible X-ray emission in a low-energy plasma focus. Europhysics Letters, 2006, 73, 42-48.                                                                                                               | 2.0 | 18        |
| 82 | Self-organized transformation to polyaniline nanowires by pulsed energetic electron irradiation in a<br>plasma focus device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373,<br>1962-1966. | 2.1 | 18        |
| 83 | Neutron and high energy deuteron anisotropy investigations in plasma focus device. Physics of Plasmas, 2009, 16, 053301.                                                                                                   | 1.9 | 18        |
| 84 | Pseudosparks in the nanosecond range of operation: firing, jitter, and current disruption. Journal Physics D: Applied Physics, 2004, 37, 2107-2111.                                                                        | 2.8 | 17        |
| 85 | The effect of pre-ionization by a shunt resistor on the reproducibility of plasma focus x-ray emission.<br>Plasma Sources Science and Technology, 2006, 15, 314-321.                                                       | 3.1 | 17        |
| 86 | Realization of enhancement in time averaged neutron yield by using repetitive miniature plasma focus<br>device as pulsed neutron source. Journal Physics D: Applied Physics, 2009, 42, 235203.                             | 2.8 | 17        |
| 87 | Backward high energy ion beams from plasma focus. Physics of Plasmas, 2009, 16, .                                                                                                                                          | 1.9 | 17        |
| 88 | Backward plume deposition as a novel technique for high deposition rate Fe nanoclusters synthesis.<br>Nanotechnology, 2007, 18, 115617.                                                                                    | 2.6 | 15        |
| 89 | Magnetic trapping induced low temperature phase transition from fcc to fct in pulsed laser deposition of FePt:Al2O3 nanocomposite thin films. Applied Physics Letters, 2007, 91, 063120.                                   | 3.3 | 15        |
| 90 | Investigation of impurity phase formation for (ZnO)1â^'x(TMO)x bulk samples formed by ball milling.<br>Applied Surface Science, 2009, 255, 4814-4820.                                                                      | 6.1 | 15        |

| #   | Article                                                                                                                                                                                                                               | IF               | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 91  | Nanostructured magnetic CoPt thin films synthesis using dense plasma focus device operating at<br>sub-kilojoule range. Journal Physics D: Applied Physics, 2009, 42, 175001.                                                          | 2.8              | 15        |
| 92  | Synthesis and characterization of polythiophenes with liquid crystalline azobenzene as side chains.<br>Thin Solid Films, 2005, 477, 88-94.                                                                                            | 1.8              | 14        |
| 93  | Synthesis of Fe3O4nanostructures by backward plume deposition and influence of ambient gas pressure on their morphology. Journal Physics D: Applied Physics, 2007, 40, 2548-2554.                                                     | 2.8              | 14        |
| 94  | Beryllium neutron activation detector for pulsed DD fusion sources. Nuclear Instruments and<br>Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2011, 659, 361-367.        | 1.6              | 14        |
| 95  | Novel fast-neutron activation counter for high repetition rate measurements. Review of Scientific Instruments, 2006, 77, 10E713.                                                                                                      | 1.3              | 13        |
| 96  | FePt : Al2O3nanocomposite thin films synthesized by magnetic trapping assisted pulsed laser deposition with reduced intergranular exchange coupling. Journal Physics D: Applied Physics, 2008, 41, 095001.                            | <sup>1</sup> 2.8 | 13        |
| 97  | Ferromagnetism in ZnCoO thin films deposited byÂPLD. Applied Physics A: Materials Science and Processing, 2010, 101, 717-722.                                                                                                         | 2.3              | 13        |
| 98  | Magnetic Reynolds Number and Neon Current Sheet Structure in the Axial Phase of a Plasma Focus.<br>Journal of Fusion Energy, 2013, 32, 50-55.                                                                                         | 1.2              | 13        |
| 99  | Potential medical applications of the plasma focus in the radioisotope production for PET imaging.<br>Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2168-2170.                                      | 2.1              | 13        |
| 100 | Fast Faraday cup for fast ion beam TOF measurements in deuterium filled plasma focus device and correlation with Lee model. Physics of Plasmas, 2017, 24, .                                                                           | 1.9              | 13        |
| 101 | Study of X-ray lithographic conditions for SU-8 by Fourier transform infrared spectroscopy.<br>Microelectronic Engineering, 2006, 83, 1912-1917.                                                                                      | 2.4              | 12        |
| 102 | Coded aperture imaging of fusion source in a plasma focus operated with pure D2 and a D2-Kr gas admixture. Applied Physics Letters, 2012, 101, .                                                                                      | 3.3              | 12        |
| 103 | Imaging of Plasma Focus Fusion by Proton Coded Aperture Technique. Journal of Fusion Energy, 2012,<br>31, 234-241.                                                                                                                    | 1.2              | 12        |
| 104 | Material ablation and plasma plume expansion study from Fe andÂgraphite targets in Ar gas atmosphere.<br>Applied Physics A: Materials Science and Processing, 2010, 101, 695-699.                                                     | 2.3              | 11        |
| 105 | Impact of laser produced X-rays on the surface of gold. Applied Surface Science, 2008, 254, 7505-7511.                                                                                                                                | 6.1              | 9         |
| 106 | High repetition rate pseudospark trigger generator. Review of Scientific Instruments, 2008, 79, 086103.                                                                                                                               | 1.3              | 9         |
| 107 | A datalogger demonstration of electromagnetic induction with a falling, oscillating and swinging magnet. Physics Education, 2010, 45, 394-401.                                                                                        | 0.5              | 9         |
| 108 | Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its<br>influence on the topography of the Fe thin film grown in pulsed laser deposition facility. Physics of<br>Plasmas, 2012, 19, . | 1.9              | 9         |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Study of Structural and Mechanical Properties of WN/a-Si3N4 Hard Coatings Grown by Plasma Focus.<br>Journal of Fusion Energy, 2015, 34, 435-442.                       | 1.2 | 9         |
| 110 | Ferromagnetic signature in vanadium doped ZnO thin films grown by pulsed laser deposition. Journal of Materials Research, 2016, 31, 3223-3229.                         | 2.6 | 9         |
| 111 | Temperature-dependent stoichiometric alteration in ZnO:Mn nanostructured thin films for enhanced ferromagnetic response. Applied Surface Science, 2016, 387, 461-468.  | 6.1 | 9         |
| 112 | Characteristics of Fast ion beam in Neon and Argon filled plasma focus correlated with Lee Model<br>Code. Vacuum, 2019, 169, 108916.                                   | 3.5 | 9         |
| 113 | Oriented growth of CoPt nanoparticles by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2010, 101, 609-613.                             | 2.3 | 8         |
| 114 | Maximizing kinetic energy transfer in one-dimensional many-body collisions. European Journal of<br>Physics, 2015, 36, 025013.                                          | 0.6 | 8         |
| 115 | Neutron Yield Scaling With Inductance in Plasma Focus. IEEE Transactions on Plasma Science, 2015, 43, 2155-2159.                                                       | 1.3 | 8         |
| 116 | Influence of Krypton Seeding on DD Fusion Neutron Production: Evaluation Methodology for Plasma<br>Focus Optimization. Journal of Fusion Energy, 2016, 35, 370-377.    | 1.2 | 8         |
| 117 | <title>Preliminary results on x-ray lithography using a compact plasma focus</title> . , 1997, , .                                                                     |     | 7         |
| 118 | Intense deuteron beam investigation by activation yield-ratio technique. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 2009, 373, 3771-3774. | 2.1 | 7         |
| 119 | Filamentary Structure of Current Sheath in Miniature Plasma Focus. IEEE Transactions on Plasma<br>Science, 2011, 39, 2432-2433.                                        | 1.3 | 7         |
| 120 | Plasma processed tungsten for fusion reactor first-wall material. Journal of Materials Science, 2021, 56, 10494-10509.                                                 | 3.7 | 7         |
| 121 | X-ray emission from plasmas formed using an excimer laser with various pulse lengths. Journal Physics D: Applied Physics, 1998, 31, 2777-2782.                         | 2.8 | 6         |
| 122 | <title>Dense plasma focus radiation source for microlithography and micromachining</title> . , 2000, 4226, 151.                                                        |     | 6         |
| 123 | Study of energy transfer in table-top X-pinch driven by a water line. Physica Scripta, 2007, 76, 134-138.                                                              | 2.5 | 6         |
| 124 | Radiation Emission Correlated with the Evolution of Current Sheath from a Deuterium Plasma Focus.<br>Journal of Fusion Energy, 2010, 29, 295-304.                      | 1.2 | 6         |
| 125 | Current sheath formation dynamics and structure for different insulator lengths of plasma focus device. Physics of Plasmas, 2014, 21, 113508.                          | 1.9 | 6         |
| 126 | Simulations of laser-produced plasma dynamics in an ambient gas. Laser and Particle Beams, 1998, 16, 317-325.                                                          | 1.0 | 5         |

| #   | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Imaging of Fusion Protons from a 3 kJ Deuterium Plasma Focus. Japanese Journal of Applied Physics, 2005, 44, 4117-4121.                                                                                                                                                   | 1.5 | 5         |
| 128 | High performance thyratron driver with low jitter. Review of Scientific Instruments, 2007, 78, 086107.                                                                                                                                                                    | 1.3 | 5         |
| 129 | Plasma dynamics and determination of ablation parameters using the near-target magnified imaging<br>during pulsed laser ablation. Applied Physics A: Materials Science and Processing, 2010, 101, 701-705.                                                                | 2.3 | 5         |
| 130 | Absolute measurements of fast neutrons using yttrium. Review of Scientific Instruments, 2010, 81, 083506.                                                                                                                                                                 | 1.3 | 5         |
| 131 | Ferromagnetic Cu and Al doped ZnO thin films by PLD. Journal of Physics: Conference Series, 2010, 200, 072045.                                                                                                                                                            | 0.4 | 5         |
| 132 | Coded aperture imaging of alpha source spatial distribution. Radiation Measurements, 2012, 47, 992-999.                                                                                                                                                                   | 1.4 | 5         |
| 133 | A model code for the radiative theta pinch. Physics of Plasmas, 2014, 21, .                                                                                                                                                                                               | 1.9 | 5         |
| 134 | Laser Shadowgraphic Study of the Influence of Krypton-Seeding, Switch Synchronization and<br>Electrode Geometry on Plasma Dynamic in Plasma Focus Device. Journal of Fusion Energy, 2015, 34,<br>794-801.                                                                 | 1.2 | 5         |
| 135 | X-ray lithography of SU8 photoresist using fast miniature plasma focus device and its characterization using FTIR spectroscopy. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 560-569.                                                  | 2.1 | 5         |
| 136 | Plasma focus neutron anisotropy measurements and influence of a deuteron beam obstacle. Nuclear<br>Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and<br>Associated Equipment, 2017, 848, 60-65.                          | 1.6 | 5         |
| 137 | Comparative numerical study of the dynamics, ion beam and flow energetics of fast and slow focus modes in a 2†kJ plasma focus operated in various gases. Vacuum, 2019, 165, 337-342.                                                                                      | 3.5 | 5         |
| 138 | Plasma focus neutron energy and anisotropy measurements using zirconium–berylliumâ€< pair activation<br>detectors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,<br>Spectrometers, Detectors and Associated Equipment, 2021, 988, 164830. | 1.6 | 5         |
| 139 | Ferrofluidic masking of solid state nuclear track detectors during etching. Radiation Measurements, 2009, 44, 173-175.                                                                                                                                                    | 1.4 | 4         |
| 140 | Correlation Analysis of Intense and High-Energy Deuteron Beam, Pinch Images, and Neutron Yield. IEEE<br>Transactions on Plasma Science, 2010, 38, 2434-2438.                                                                                                              | 1.3 | 4         |
| 141 | Synthesis of nano-structure tungsten nitride thin films on silicon using Mather-type plasma focus.<br>Radiation Effects and Defects in Solids, 2015, 170, 557-566.                                                                                                        | 1.2 | 4         |
| 142 | Broad-energy oxygen ion implantation controlled magnetization dynamics in CoFeTaZr. Journal of Alloys and Compounds, 2021, 872, 159685.                                                                                                                                   | 5.5 | 4         |
| 143 | <title>Single-shot wavefront measurement of sub-ps laser pulses</title> . , 1995, , .                                                                                                                                                                                     |     | 3         |
| 144 | Studies of the fast ignition route to inertial confinement fusion at the Rutherford Appleton<br>Laboratory. Fusion Engineering and Design, 1999, 44, 239-243.                                                                                                             | 1.9 | 3         |

| #   | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Fusion reactions in a plasma focus operated with3He-D2and4He-D2gas mixtures. Physica Scripta, 2006, T123, 124-130.                                                                                                            | 2.5 | 3         |
| 146 | Electron Beam Emission Characteristics from Plasma Focus Devices. AIP Conference Proceedings, 2006,                                                                                                                           | 0.4 | 3         |
| 147 | Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2and Al2O3.<br>Journal of Physics: Conference Series, 2006, 28, 100-104.                                                             | 0.4 | 3         |
| 148 | Electronic, structural and magnetic characterization of bulk (ZnO)1â^'x(MnO2)xsystem and their PLD synthesized thin films at room temperature. Journal of Physics: Conference Series, 2010, 200, 072044.                      | 0.4 | 3         |
| 149 | Tailoring out-of-plane magnetic properties of pulsed laser deposited FePt thin films by changing laser<br>energy fluence. Applied Surface Science, 2014, 315, 37-44.                                                          | 6.1 | 3         |
| 150 | Note: A novel trigger generator for a pseudospark switch. Review of Scientific Instruments, 2015, 86, 016108.                                                                                                                 | 1.3 | 3         |
| 151 | External circuit integration with electromagnetic particle in cell modeling of plasma focus devices.<br>Physics of Plasmas, 2015, 22, 033514.                                                                                 | 1.9 | 3         |
| 152 | Correlation of Characteristic Ne SXR Signal Pulse With Computed Plasma Focus Dynamics in the Ne<br>(97.5%)–Kr (2.5%) Admixtures of the INTI PF Machine at 12 kV. IEEE Transactions on Plasma Science, 2019,<br>47, 1297-1301. | 1.3 | 3         |
| 153 | X-ray emission from plasmas generated by 450 femtosecond excimer laser pulses. Physica Scripta, 1997, 55, 651-653.                                                                                                            | 2.5 | 2         |
| 154 | An effective configuration for interferometric measurement of pulsed laser-induced plasma densities.<br>Optik, 2008, 119, 733-737.                                                                                            | 2.9 | 2         |
| 155 | X-ray Emission from Plasma Focus: Envisioned by Various Competitive Detectors. Journal of Fusion Energy, 2009, 28, 124-129.                                                                                                   | 1.2 | 2         |
| 156 | On the Conceptual Understanding of the Photoelectric Effect. , 2010, , .                                                                                                                                                      |     | 2         |
| 157 | PMT-scintillator system set up for D-D neutron TOF measurements in INTI plasma focus device. AIP Conference Proceedings, 2017, , .                                                                                            | 0.4 | 2         |
| 158 | Which bulb is brighter? It depends on connection! Strategies for illuminating electrical concepts using light bulbs. Physics Education, 2017, 52, 065008.                                                                     | 0.5 | 2         |
| 159 | <title>Compact plasma focus soft x-ray source with high repetition rate and high intensity</title> . ,<br>1997, , .                                                                                                           |     | 1         |
| 160 | <title>Lithography using a compact plasma focus electron source</title> . , 1997, , .                                                                                                                                         |     | 1         |
| 161 | Optical Emission Spectroscopy to study FeCo thin film deposition using plasma focus. AIP Conference Proceedings, 2006, , .                                                                                                    | 0.4 | 1         |
| 162 | Repetitive Operation of A Dense Plasma Soft X-ray Source for Micromachining. AIP Conference<br>Proceedings, 2006, , .                                                                                                         | 0.4 | 1         |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Effect of anode shapes on neutron emission from a repetitive plasma focus device. , 2007, , .                                                                                            |     | 1         |
| 164 | Investigation of laser produced Fe plasma plume dynamics using time resolved imaging and snow plow model. Proceedings of SPIE, 2008, , .                                                 | 0.8 | 1         |
| 165 | On The Conceptual Understanding Of †Work Done' For Secondary One Students In Singapore. , 2010, , .                                                                                      |     | 1         |
| 166 | Detection of pulsed neutrons with solid-state electronics. International Journal of Modern Physics<br>Conference Series, 2016, 44, 1660229.                                              | 0.7 | 1         |
| 167 | Shadowgraphic and euv emission studies of low energy miniature plasma focus device. , 2007, , .                                                                                          |     | Ο         |
| 168 | Ambient room temperature dense plasma focus deposition of nano phase TiO <inf>2</inf> thin films on polymeric materials. , 2009, , .                                                     |     | 0         |
| 169 | Miniature plasma focus device as a portable hard x-ray source for fast radiography applications. ,<br>2009, , .                                                                          |     | 0         |
| 170 | Preliminary result of Coded Aperture Imaging on NX2 Plasma Focus. , 2009, , .                                                                                                            |     | 0         |
| 171 | Magnetic spectrometry of deuteron spectra in NX2 plasma focus. , 2009, , .                                                                                                               |     | 0         |
| 172 | Direct Synthesis of L10-Phase Nanostructured CoPt Using Dense Plasma Focus Device Operating in Non-optimized Focus Mode. Materials Research Society Symposia Proceedings, 2010, 1250, 1. | 0.1 | 0         |
| 173 | Low-energy repetitive plasma focus based neon soft x-ray lithography source. Proceedings of SPIE, 2014, , .                                                                              | 0.8 | 0         |
| 174 | Design of a Pixelated Imaging System for Fast Neutron Sources. Designs, 2019, 3, 25.                                                                                                     | 2.4 | 0         |
| 175 | Plasma Assisted Hydrogen Functionalization of Graphene/Si For Photodetection. , 2020, , .                                                                                                |     | 0         |
| 176 | Effect of Oxygen Plasma on Magnetoelectric Properties of NiFe <sub>2</sub> O <sub>4</sub> /PVDF<br>Composites. , 2020, , .                                                               |     | 0         |