
Joseph D Dougherty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5451568/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Oxytocin receptor activation does not mediate associative fear deficits in a Williams Syndrome model. Genes, Brain and Behavior, 2022, 21, e12750.	1.1	6
2	Functional Connectivity of the Developing Mouse Cortex. Cerebral Cortex, 2022, 32, 1755-1768.	1.6	7
3	A Proposed Role for Interactions between Argonautes, miRISC, and RNA Binding Proteins in the Regulation of Local Translation in Neurons and Glia. Journal of Neuroscience, 2022, 42, 3291-3301.	1.7	5
4	Fluoxetine exposure throughout neurodevelopment differentially influences basilar dendritic morphology in the motor and prefrontal cortices. Scientific Reports, 2022, 12, 7605.	1.6	3
5	Massively Parallel Reporter Assays: Defining Functional Psychiatric Genetic Variants Across Biological Contexts. Biological Psychiatry, 2021, 89, 76-89.	0.7	34
6	Extended amygdala-parabrachial circuits alter threat assessment and regulate feeding. Science Advances, 2021, 7, .	4.7	36
7	Ontogenetic Oxycodone Exposure Affects Early Life Communicative Behaviors, Sensorimotor Reflexes, and Weight Trajectory in Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 615798.	1.0	10
8	Loss of Quaking RNA binding protein disrupts the expression of genes associated with astrocyte maturation in mouse brain. Nature Communications, 2021, 12, 1537.	5.8	19
9	Shared developmental gait disruptions across two mouse models of neurodevelopmental disorders. Journal of Neurodevelopmental Disorders, 2021, 13, 10.	1.5	5
10	Transcriptional-regulatory convergence across functional MDD risk variants identified by massively parallel reporter assays. Translational Psychiatry, 2021, 11, 403.	2.4	11
11	Sex Differences in the Role of CNIH3 on Spatial Memory and Synaptic Plasticity. Biological Psychiatry, 2021, 90, 766-780.	0.7	10
12	utr.annotation: a tool for annotating genomic variants that could influence post-transcriptional regulation. Bioinformatics, 2021, 37, 3926-3928.	1.8	2
13	A MYT1L syndrome mouse model recapitulates patient phenotypes and reveals altered brain development due to disrupted neuronal maturation. Neuron, 2021, 109, 3775-3792.e14.	3.8	34
14	The TMEM106B FTLD-protective variant, rs1990621, is also associated with increased neuronal proportion. Acta Neuropathologica, 2020, 139, 45-61.	3.9	51
15	DNMT3A Haploinsufficiency Results in Behavioral Deficits and Global Epigenomic Dysregulation Shared across Neurodevelopmental Disorders. Cell Reports, 2020, 33, 108416.	2.9	37
16	Self-Reporting Transposons Enable SimultaneousÂReadout of Gene Expression and TranscriptionÂFactor Binding in Single Cells. Cell, 2020, 182, 992-1008.e21.	13.5	54
17	High-throughput single-cell functional elucidation of neurodevelopmental disease–associated genes reveals convergent mechanisms altering neuronal differentiation. Genome Research, 2020, 30, 1317-1331.	2.4	50
18	The trajectory of gait development in mice. Brain and Behavior, 2020, 10, e01636.	1.0	23

#	Article	IF	CITATIONS
19	CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system. Scientific Reports, 2020, 10, 4921.	1.6	23
20	DeepH&M: Estimating single-CpG hydroxymethylation and methylation levels from enrichment and restriction enzyme sequencing methods. Science Advances, 2020, 6, .	4.7	8
21	An inducible Cre mouse line to sparsely target nervous system cells, including Remak Schwann cells. Neural Development, 2020, 15, 2.	1.1	4
22	Human iPSC-Derived Neurons and Cerebral Organoids Establish Differential Effects of Germline NF1 Gene Mutations. Stem Cell Reports, 2020, 14, 541-550.	2.3	48
23	Functions of <i>Gtf2i</i> and <i>Gtf2ird1</i> in the developing brain: transcription, DNA binding and long-term behavioral consequences. Human Molecular Genetics, 2020, 29, 1498-1519.	1.4	18
24	A viral toolkit for recording transcription factor–DNA interactions in live mouse tissues. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10003-10014.	3.3	17
25	CLIP and Massively Parallel Functional Analysis of CELF6 Reveal a Role in Destabilizing Synaptic Gene mRNAs through Interaction with 3′ UTR Elements. Cell Reports, 2020, 33, 108531.	2.9	14
26	A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward. Cell, 2019, 178, 653-671.e19.	13.5	76
27	Gtf2i and Ctf2ird1 mutation do not account for the full phenotypic effect of the Williams syndrome critical region in mouse models. Human Molecular Genetics, 2019, 28, 3443-3465.	1.4	23
28	Loss of CELF6 RNA binding protein impairs cocaine conditioned place preference and contextual fear conditioning. Genes, Brain and Behavior, 2019, 18, e12593.	1.1	15
29	Erroneous inference based on a lack of preference within one group: Autism, mice, and the social approach task. Autism Research, 2019, 12, 1171-1183.	2.1	22
30	Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nature Genetics, 2019, 51, 106-116.	9.4	231
31	Cell-Type-Specific Profiling of Alternative Translation Identifies Regulated Protein Isoform Variation in the Mouse Brain. Cell Reports, 2019, 26, 594-607.e7.	2.9	61
32	Altered social behavior in mice carrying a cortical <i>Foxp2</i> deletion. Human Molecular Genetics, 2019, 28, 701-717.	1.4	31
33	Maternal Fluoxetine Exposure Alters Cortical Hemodynamic and Calcium Response of Offspring to Somatosensory Stimuli. ENeuro, 2019, 6, ENEURO.0238-19.2019.	0.9	5
34	Muscularis macrophage development in the absence of an enteric nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4696-4701.	3.3	61
35	Weaving New Insights for the Genetic Regulation of Human Cognitive Phenotypes. Cell, 2018, 172, 10-13.	13.5	63
36	Characterization of early communicative behavior in mouse models of neurofibromatosis type 1. Autism Research, 2018, 11, 44-58.	2.1	32

#	Article	IF	CITATIONS
37	Characterization of a Mouse Model of Börjeson-Forssman-Lehmann Syndrome. Cell Reports, 2018, 25, 1404-1414.e6.	2.9	19
38	Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus. Cell Reports, 2018, 23, 2225-2235.	2.9	74
39	Genetic variants associated with Alzheimer's disease confer different cerebral cortex cell-type population structure. Genome Medicine, 2018, 10, 43.	3.6	62
40	Exome sequencing of 85 Williams–Beuren syndrome cases rules out coding variation as a major contributor to remaining variance in social behavior. Molecular Genetics & Genomic Medicine, 2018, 6, 749-765.	0.6	9
41	Motor neuron-derived microRNAs cause astrocyte dysfunction in amyotrophic lateral sclerosis. Brain, 2018, 141, 2561-2575.	3.7	50
42	Examining the Reversibility of Long-Term Behavioral Disruptions in Progeny of Maternal SSRI Exposure. ENeuro, 2018, 5, ENEURO.0120-18.2018.	0.9	26
43	The Differences in Local Translatome across Distinct Neuron Types Is Mediated by Both Baseline Cellular Differences and Post-transcriptional Mechanisms. ENeuro, 2018, 5, ENEURO.0320-18.2018.	0.9	15
44	Optical Imaging of Functional Connectivity Across Development in the Mouse Cortex. , 2018, , .		0
45	A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of <i>cis</i> -regulatory activity in neural cells. Nucleic Acids Research, 2017, 45, gkw942.	6.5	48
46	A Comprehensive Analysis of Cell Type–Specific Nuclear RNA From Neurons and Glia of the Brain. Biological Psychiatry, 2017, 81, 252-264.	0.7	47
47	Sumoylation of FOXP2 Regulates Motor Function and Vocal Communication Through Purkinje Cell Development. Biological Psychiatry, 2017, 81, 220-230.	0.7	43
48	MicroRNA Profiling Reveals Marker of Motor Neuron Disease in ALS Models. Journal of Neuroscience, 2017, 37, 5574-5586.	1.7	66
49	Astrocytes locally translate transcripts in their peripheral processes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3830-E3838.	3.3	151
50	Systems biology in the central nervous system: A brief perspective on essential recent advancements. Current Opinion in Systems Biology, 2017, 3, 67-76.	1.3	8
51	Pcdhαc2 is required for axonal tiling and assembly of serotonergic circuitries in mice. Science, 2017, 356, 406-411.	6.0	121
52	Different Mixed Astrocyte Populations Derived from Embryonic Stem Cells Have Variable Neuronal Growth Support Capacities. Stem Cells and Development, 2017, 26, 1597-1611.	1.1	11
53	Generation and characterization of a mouse line for monitoring translation in dopaminergic neurons. Scientific Reports, 2017, 7, 8117.	1.6	5
54	MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts. Cell Stem Cell, 2017, 21, 332-348.e9.	5.2	112

#	Article	IF	CITATIONS
55	Transcriptomic Analysis of Ribosome-Bound mRNA in Cortical Neurites <i>In Vivo</i> . Journal of Neuroscience, 2017, 37, 8688-8705.	1.7	49
56	The Expanding Toolkit of Translating Ribosome Affinity Purification. Journal of Neuroscience, 2017, 37, 12079-12087.	1.7	28
57	Dexmedetomidine protects against glucocorticoid induced progenitor cell apoptosis in neonatal mouse cerebellum. Journal of Maternal-Fetal and Neonatal Medicine, 2017, 30, 2156-2162.	0.7	2
58	Group and Individual Variability in Mouse Pup Isolation Calls Recorded on the Same Day Show Stability. Frontiers in Behavioral Neuroscience, 2017, 11, 243.	1.0	22
59	Quantitative Nucleotide Level Analysis of Regulation of Translation in Response to Depolarization of Cultured Neural Cells. Frontiers in Molecular Neuroscience, 2017, 10, 9.	1.4	12
60	Analysis of within Subjects Variability in Mouse Ultrasonic Vocalization: Pups Exhibit Inconsistent, State-Like Patterns of Call Production. Frontiers in Behavioral Neuroscience, 2016, 10, 182.	1.0	31
61	Chitinase-3-like 1 protein (CHI3L1) locus influences cerebrospinal fluid levels of YKL-40. BMC Neurology, 2016, 16, 217.	0.8	12
62	The RNA-binding protein Celf6 is highly expressed in diencephalic nuclei and neuromodulatory cell populations of the mouse brain. Brain Structure and Function, 2016, 221, 1809-1831.	1.2	9
63	Moving from capstones toward cornerstones: successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders. Frontiers in Genetics, 2015, 6, 301.	1.1	14
64	The anatomical distribution of genetic associations. Nucleic Acids Research, 2015, 43, 10804-10820.	6.5	37
65	The female protective effect in autism spectrum disorder is not mediated by a single genetic locus. Molecular Autism, 2015, 6, 25.	2.6	50
66	FoxP1 orchestration of ASD-relevant signaling pathways in the striatum. Genes and Development, 2015, 29, 2081-2096.	2.7	91
67	Investigation of Maternal Genotype Effects in Autism by Genomeâ€Wide Association. Autism Research, 2014, 7, 245-253.	2.1	6
68	Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders. Journal of Neuroscience, 2014, 34, 1420-1431.	1.7	261
69	Lithium protects against glucocorticoid induced neural progenitor cell apoptosis in the developing cerebellum. Brain Research, 2014, 1545, 54-63.	1.1	22
70	Testing the role of preBötzinger Complex somatostatin neurons in respiratory and vocal behaviors. European Journal of Neuroscience, 2014, 40, 3067-3077.	1.2	25
71	Aldh1L1 is expressed by postnatal neural stem cells <i>in vivo</i> . Glia, 2013, 61, 1533-1541.	2.5	58
72	The Disruption of <i>Celf6</i> , a Gene Identified by Translational Profiling of Serotonergic Neurons, Results in Autism-Related Behaviors. Journal of Neuroscience, 2013, 33, 2732-2753.	1.7	88

#	Article	IF	CITATIONS
73	Identifying Essential Cell Types and Circuits in Autism Spectrum Disorders. International Review of Neurobiology, 2013, 113, 61-96.	0.9	17
74	Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes and Development, 2013, 27, 565-578.	2.7	87
75	Development of translating ribosome affinity purification for zebrafish. Genesis, 2013, 51, 187-192.	0.8	41
76	Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17077-17082.	3.3	89
77	Cell type-specific analysis of human brain transcriptome data to predict alterations in cellular composition. Systems Biomedicine (Austin, Tex), 2013, 1, 151-160.	0.7	19
78	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development (Cambridge), 2012, 139, 2477-2487.	1.2	112
79	Candidate Pathways for Promoting Differentiation or Quiescence of Oligodendrocyte Progenitor-like Cells in Glioma. Cancer Research, 2012, 72, 4856-4868.	0.4	68
80	Mouse Transgenesis in a Single Locus with Independent Regulation for Multiple Fluorophores. PLoS ONE, 2012, 7, e40511.	1.1	12
81	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord Journal of Cell Science, 2012, 125, e1-e1.	1.2	2
82	Recruited Cells Can Become Transformed and Overtake PDGF-Induced Murine Gliomas In Vivo during Tumor Progression. PLoS ONE, 2011, 6, e20605.	1.1	72
83	Analytical approaches to RNA profiling data for the identification of genes enriched in specific cells. Nucleic Acids Research, 2010, 38, 4218-4230.	6.5	294
84	Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types. Cell, 2009, 139, 1022.	13.5	5
85	Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types. Cell, 2008, 135, 749-762.	13.5	807
86	Phosphoserine Phosphatase Is Expressed in the Neural Stem Cell Niche and Regulates Neural Stem and Progenitor Cell Proliferation. Stem Cells, 2007, 25, 1975-1984.	1.4	31
87	PTEN negatively regulates neural stem cell self-renewal by modulating GO-G1 cell cycle entry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 111-116.	3.3	281
88	PBK/TOPK, a Proliferating Neural Progenitor-Specific Mitogen-Activated Protein Kinase Kinase. Journal of Neuroscience, 2005, 25, 10773-10785.	1.7	90
89	Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation. Journal of Cell Biology, 2005, 170, 413-427.	2.3	136
90	Homologues of the Caenorhabditis elegans Fox-1 Protein Are Neuronal Splicing Regulators in Mammals. Molecular and Cellular Biology, 2005, 25, 10005-10016.	1.1	268

#	Article	IF	CITATIONS
91	Progress in Realizing the Promise of Microarrays in Systems Neurobiology. Neuron, 2005, 45, 183-185.	3.8	21
92	Developmental expression of glial fibrillary acidic protein mRNA in mouse forebrain germinal zones—implications for stem cell biology. Developmental Brain Research, 2004, 153, 121-125.	2.1	31
93	Neural progenitor genes. Developmental Biology, 2003, 264, 309-322.	0.9	62
94	Subtraction-coupled Custom Microarray Analysis for Gene Discovery and Gene Expression Studies in the CNS. Chemical Senses, 2002, 27, 293-298.	1.1	21
95	A Genetic Analysis of Neural Progenitor Differentiation. Neuron, 2001, 29, 325-339.	3.8	243