Syed Ahmed Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5451203/publications.pdf Version: 2024-02-01

SVED AHMED ALL

#	Article	IF	CITATIONS
1	Recent Advances in Reactions of Alkylbenzenes Over Novel Zeolites: The Effects of Zeolite Structure and Morphology. Catalysis Reviews - Science and Engineering, 2014, 56, 333-402.	12.9	148
2	Recent Advances in Heavy Oil Upgrading Using Dispersed Catalysts. Energy & Fuels, 2019, 33, 7917-7949.	5.1	71
3	Single-pot synthesis of Ti-SBA-15-NiMo hydrodesulfurization catalysts: Role of calcination temperature on dispersion and activity. Applied Catalysis B: Environmental, 2017, 203, 428-441.	20.2	62
4	Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Processing Technology, 2013, 109, 172-178.	7.2	58
5	Simultaneous hydrodesulfurization of dibenzothiophene and substituted dibenzothiophenes over phosphorus modified CoMo/Al2O3 catalysts. Fuel Processing Technology, 2012, 98, 39-44.	7.2	48
6	Catalytic cracking of heavy naphtha-range hydrocarbons over different zeolites structures. Fuel Processing Technology, 2014, 122, 12-22.	7.2	45
7	Kinetics of dealkylation–transalkylation of C9 alkyl-aromatics over zeolites of different structures. Chemical Engineering Research and Design, 2013, 91, 2601-2616.	5.6	38
8	Catalytic Cracking of Arab Super Light Crude Oil to Light Olefins: An Experimental and Kinetic Study. Energy & Fuels, 2018, 32, 2234-2244.	5.1	34
9	Mild hydrocracking of 1-methyl naphthalene (1-MN) over alumina modified zeolite. Journal of Industrial and Engineering Chemistry, 2013, 19, 627-632.	5.8	33
10	Kinetics of Promotional Effects of Oil-Soluble Dispersed Metal (Mo, Co, and Fe) Catalysts on Slurry Phase Hydrocracking of Vacuum Gas Oil. Energy & Fuels, 2017, 31, 3132-3142.	5.1	33
11	Deep desulfurization of gas oil over NiMo catalysts supported on alumina–zirconia composites. Fuel, 2012, 97, 662-669.	6.4	31
12	Effects of hydrogen sulfide and ammonia on catalytic hydrogenation of propylbenzene. Industrial & Engineering Chemistry Process Design and Development, 1984, 23, 179-181.	0.6	26
13	Impact of Gasoline and Diesel Specifications on the Refining Industry. Energy Sources Part A Recovery, Utilization, and Environmental Effects, 1996, 18, 203-214.	0.5	25
14	Deep desulfurization of gas oil over NiMoS catalysts supported on alumina coated USY-zeolite. Fuel Processing Technology, 2013, 116, 44-51.	7.2	23
15	Dearomatization, cetane improvement and deep desulfurization of diesel feedstock in a single-stage reactor. Reaction Kinetics and Catalysis Letters, 1997, 61, 363-368.	0.6	20
16	Simultaneous HDS of DBT and 4,6-DMDBT over single-pot Ti-SBA-15-NiMo catalysts: influence of Si/Ti ratio on the structural properties, dispersion and catalytic activity. RSC Advances, 2017, 7, 21943-21952.	3.6	20
17	Hierarchical composite catalysts of MCM-41 on zeolite Beta for conversion of heavy reformate to xylenes. Journal of Industrial and Engineering Chemistry, 2021, 98, 189-199.	5.8	18
18	Prediction of reformate research octane number by FT-i.r. spectroscopy. Fuel, 1995, 74, 227-231.	6.4	15

SYED AHMED ALI

#	Article	IF	CITATIONS
19	Synthesis of a Ti-SBA-15-NiMo Hydrodesulfurization Catalyst: The Effect of the Hydrothermal Synthesis Temperature of NiMo and Molybdenum Loading on the Catalytic Activity. Industrial & Engineering Chemistry Research, 2017, 56, 5201-5209.	3.7	15
20	Catalysis of metal supported zeolites for dealkylation–transalkylation of alkyl-aromatics. Applied Catalysis A: General, 2016, 514, 154-163.	4.3	14
21	Effects of catalytic hydrotreating on light cycle oil fuel quality. Industrial & Engineering Chemistry Research, 1991, 30, 2586-2592.	3.7	13
22	Selective production of xylenes from alkyl-aromatics and heavy reformates over dual-zeolite catalyst. Catalysis Today, 2015, 243, 118-127.	4.4	13
23	Novel (Co-,Ni)- <i>p</i> - <i>tert</i> -Butylcalix[4]arenes as Dispersed Catalysts for Heavy Oil Upgrading: Synthesis, Characterization, and Performance Evaluation. Energy & Fuels, 2019, 33, 561-573.	5.1	13
24	Development of improved catalysts for deep HDS of diesel fuels. Applied Petrochemical Research, 2014, 4, 409-415.	1.3	12
25	Kinetics of the synergy effects in heavy oil upgrading using novel Ni-p-tert-butylcalix[4]arene as a dispersed catalyst with a supported catalyst. Fuel Processing Technology, 2019, 185, 158-168.	7.2	12
26	Transalkylation of 1,2,4-trimethylbenzene with toluene over large pore zeolites: Role of pore structure and acidity. Applied Catalysis A: General, 2020, 608, 117886.	4.3	12
27	Influence of toluene–tetramethylbenzene transalkylation on heavy aromatics conversion to xylenes. Journal of Industrial and Engineering Chemistry, 2015, 21, 1077-1088.	5.8	11
28	Analysis and deep hydrodesulfurization reactivity of Saudi Arabian gas oils. Journal of Industrial and Engineering Chemistry, 2013, 19, 1577-1582.	5.8	9
29	Identification and quantification of (alkyl)benzenes in hydrocracked products of light cycle oil by GC–AED. Fuel, 2013, 111, 883-886.	6.4	9
30	Performance evaluation of HDS catalysts by distribution of sulfur compounds in naphtha. Fuel, 1995, 74, 1254-1260.	6.4	8
31	Parametric study of catalytic reforming process Â. Reaction Kinetics and Catalysis Letters, 2005, 87, 199-206.	0.6	8
32	Phenomenological kinetics modeling of simultaneous HDS of dibenzothiophene and substituted dibenzothiophene over CoMoP/Al2O3 catalysts. Chemical Engineering Research and Design, 2015, 104, 819-827.	5.6	8
33	Kinetics of simultaneous HDS of DBT and 4â€MDBT/4,6â€ÐMDBT over CoMoP/γâ€Al ₂ O ₃ catalysts. Canadian Journal of Chemical Engineering, 2018, 96, 712-721.	1.7	8
34	Temperature-programmed desorption and reduction of sulfided alumina-pillared montmorillonite. Applied Catalysis A: General, 1999, 179, 139-144.	4.3	7
35	Simultaneous hydrodesulfurization of benzothiophene and dibenzothiophene over CoMo/Al2O3 catalysts with different [Co/(CoÂ+ÂMo)] ratios. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 113-123.	1.7	7
36	Hydrocracking of LVGO Using Dispersed Catalysts Derived from Soluble Precursors: Performance Evaluation and Kinetics. Industrial & Engineering Chemistry Research, 2019, 58, 14709-14718.	3.7	7

SYED AHMED ALI

#	Article	IF	CITATIONS
37	High Surface Area Smectite Supported Cobalt Oxides as Active Catalysts for Thiophene Hydrodesulfurization. Chemistry Letters, 1997, 26, 433-434.	1.3	6
38	Factors influencing the performance of naphtha hydro-desulfurization catalysts. Studies in Surface Science and Catalysis, 1996, 100, 225-234.	1.5	5
39	61 Preparation, characterization, and catalytic evaluation of first stage hydrocracking catalyst. Studies in Surface Science and Catalysis, 2003, 145, 295-298.	1.5	4
40	On the influence of alumina as a binder on the performance of Pt-Beta catalyst during the transalkylation of toluene and 1,2,4-Trimethylbenzene. Microporous and Mesoporous Materials, 2021, 320, 111095.	4.4	4
41	Surface Area and Porosity Measurements of Steam Reforming and Methanation Catalysts. Journal of King Saud University, Engineering Sciences, 1995, 7, 257-269.	2.0	3
42	AN ALTERNATE METHOD TO ESTIMATE REFORMATE OCTANE NUMBER. Petroleum Science and Technology, 1995, 13, 545-558.	0.2	3
43	Improved Dispersion and Ultradeep Activity of HDS Catalyst by New Synthesis Approach. ChemistrySelect, 2019, 4, 370-377.	1.5	3
44	Influence of heteroatom removal on aromatic hydrogenation. Fuel Processing Technology, 1998, 55, 93-99.	7.2	1
45	Hydrotreatment of Light Cycle Oil by Competitive Catalysts. Bulletin Des Sociétés Chimiques Belges, 1991, 100, 887-895.	0.0	1